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35708 Rennes cedex 7, France

Julie Josse, Julie.Josse@agrocampus-ouest.fr

Department of Applied Mathematics
Agrocampus Ouest
65 rue de Saint-Brieuc
CS 84215
35042 Rennes Cedex, France



Scientific Programme Committee

• Avner Bar Hen

Paris Descartes University, France

• Francesco Bartolucci

Perugia University, Italy

• Dankmar Böhning
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Preface

Dear Participants,

We welcome you to the 31st International Workshop on Statistical
Modelling (IWSM) in Rennes, France. Since the inaugural workshop held
in Innsbruck (Austria) in 1986, IWSM visited several European countries
and travelled to USA and Australia. But this is only the second time that
IWSM visits France, after Toulouse edition (1990). We are particularly
happy and honoured to host this conference in Rennes, a city which has a
long tradition of research in Statistics (Rennes hosted the development of
the French School of analyse des données). Nowadays, Rennes has become
one main place for Statistics in France, with several high level training
programs provided by Rennes universities and Grandes Ecoles. Statistics
is also one of the priority themes of the Centre Henri Lebesgue (a research
center for mathematics founded in 2012), whose aim is to promote research
and graduate studies in mathematics in Western France. IWSM2016 is the
closing conference of a ”Statistics thematic semester” supported by the
Centre Henri Lebesgue. This semester hosted height international events
devoted to Statistics and its applications.

IWSM’2016 will perpetuate the tradition of a convivial event where stimu-
lating discussions, exchange of ideas and interactions between participants
are strongly encouraged through some well-established features of the work-
shop: no parallel session, a particular emphasis placed on interdisciplinar-
ity and the participation of young researchers, and an attractive social
program.

The high standards of the conference and the quality of all presenta-
tions are ensured by the scientific committee, who made a great work
in reviewing all submitted abstracts. The scientific committee also invited
renowned experts to give plenary talks and we are very glad that Francesca
Chiaromonte, Stefan Lang, Jean-Michel Marin, Adrian Raftery and Sujit
Sahu accepted the invitation to give a presentation. We are also glad that
Søren Højsgaard accepted our invitation to give a one day course, preceding
the workshop.

IWSM also constitutes a wonderful opportunity for students to exchange
with senior scientists. For this reason, and following IWSM tradition, stu-
dent participation has been strongly encouraged. Three students will re-
ceive awards for the best student paper, best oral presentation and best
poster. Furthermore, two student travel grants have been kindly provided
by the Statistical Modelling Society. Seven additional student grants were
generously provided by the Centre Henri Lebesgue.



Finally, we thank all authors for their contributions to this edition of IWSM
and for their careful work in preparing their manuscripts for the proceedings
volumes. We wish you a pleaseant stay in Rennes, a stimulating conference
and hopefully. . . some nice weather on Brittany!

On behalf of the local organizing committee
Jean-François Dupuy

Rennes, May 2016
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Functional Data Analysis at the boundary of
“Omics”

Marzia Cremona1, Rebeca Campos-Sanchez2, Alessia Pini3,
Simone Vantini3, Kateryna Makova1, Francesca Chiaromonte1,4

1 The Pennsylvania State University, USA
2 University of Costa Rica, Costa Rica
3 Politecnico di Milano, Italy
4 Sant Anna School of Advanced Studies, Italy

E-mail for correspondence: fxc11@psu.edu

Abstract: In this talk, we will describe two collaborative projects in which Func-
tional Data Analysis techniques have been successfully applied to large “Omics”
data sets. In the first, we considered a collection of thousands of endogenous retro-
virus sequences detected in the human and mouse genomes, and quantitated a
large number of genomic landscape features around their integration sites and
in control regions. Using a recently proposed Interval Testing Procedure (ITP;
Pini and Vantini, 2016) and Functional Logistic Regression, we were able to gain
important insights on the effects of such features on the integration and fixation
of endogenous retroviruses (Campos-Sanchez et al., 2016). In the second project,
we developed an algorithm for probabilistic k-means clustering with alignment
to perform Functional Motif Discovery across a set of curves. We are using this
algorithm to explore the high-resolution profiles of different mutation rates in
regions of the human genome identified in Kuruppumullage et al. (2013), and
expect it to have broad applicability to other “Omics” studies.

Keywords: Functional Data Analysis; “Omics” data; Interval Testing Proce-
dure; Functional Motif Discovery.

1 Functional Data Analysis in “Omics” research

Functional Data Analysis has been instrumental to advances in many scien-
tific domains. In the last years, it has increasingly been applied to “Omics”
research. One example are functional linear models used to screen variants
(e.g., SNPs; single nucleotide polymorphisms) genome-wide, and possibly

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).



4 FDA in “Omics”

accounting for a number of covariates, to identify effects on a complex phe-
notype quantitated as a response curve (e.g., Reimherr and Nicolae, 2014).
This is an important extension of classical GWAS (genome-wide associa-
tion studies), where the phenotypes are expressed as case/control binary
variables, and QTL (quantitative trait loci) analyses, where the pheno-
types are expressed as continuous variables. Another example are analyses
of the shapes of peaks produced by ChiP-seq experiments, which indicate
the putative binding locations of proteins interacting with the genome un-
der certain conditions or in certain tissues/cell types. Clustering of peak
shapes can be used to identify meaningful groups or types of binding sites
genome-wide (e.g., Cremona et al., 2015).

2 Investigating fixation and integration preferences of
endogenous retroviruses with ITP and Functional
Logistic Regression

Recently, we used Functional Data Analysis techniques to investigate fea-
tures of the genomic landscape that may affect the integration and fixation
of endogenous retroviruses (ERVs), based on their profiles around ERVs’
integration sites (Campos-Sanchez et al., 2016). ERVs are the remnants of
retroviral infections in the germ line. They occupy a large portion of many
mammalian genomes (∼8% and ∼10% of the human and mouse genomes,
respectively) and distribute unevenly along them – contributing to shape
genomic structure, evolution and function. In our study, we considered a
large collection of the most recently active ERVs in the human and mouse
genomes, comprising 826 fixed and 1,065 in vitro HERV-Ks in human, and
1,624 fixed and 242 polymorphic ETns, as well as 3,964 fixed and 1,986
polymorphic IAPs, in mouse. We quantitated over 40 human and mouse ge-
nomic landscape features (e.g., non-B DNA structure, recombination rates,
and histone modifications) at 1kb resolution in the ± 32kb flanking regions
of these ERVs and in control regions, and analyzed the resulting profiles
with a powerful functional hypothesis test, the Interval Testing Procedure
(ITP; Pini and Vantini, 2016) – which we generalized for our study – as well
as Functional Logistic Regression. These analyses allowed us to identify ge-
nomic scales and locations where various features display their influence,
and to understand how they work in concert to provide signals essential for
integration and fixation of ERVs.

Importantly, contrasting ERVs of different evolutionary ages (young in vitro
and polymorphic ERVs, older fixed ERVs) we were able to disentangle in-
tegration vs. fixation preferences and to gain important insights on the
mechanisms underlying the uneven distribution of ERVs along the genome.
We found that ERVs integrate preferentially in late-replicating, AT-rich re-
gions with abundant microsatellites, mirror repeats, and repressive histone
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marks. We also found that ERVs fixate preferentially in regions depleted of
genes and evolutionarily conserved elements, and with low recombination
rates – likely reflecting the fact that purifying selection and ectopic recom-
bination act to remove ERVs from the genome. Interestingly, in addition
to a negative effect on fixation of high recombination rates in both human
and mouse genomes, we found a positive association between recombina-
tion hotspots and ERVs fixation in human, and one between hotspots and
ERVs integration in mouse.

3 Exploring patterns in mutation rates profiles with
Functional Motif Discovery

On a different front, motivated by an attempt to explore the high-resolution
profiles of different types of mutation rates (point substitutions, small inser-
tions and small deletions) along some special regions of the human genome
identified in (Kuruppumullage et al., 2013), we are developing an approach
for Functional Motif Discovery – i.e. for finding shapes that recur within a
given set of curves. This exercise connects Functional Data Analysis with
the notion of motif discovery, typically on sequences of categorical symbols,
which is ubiquitous in bioinformatics. Unlike other approaches proposed in
the literature (e.g., Chiu et al., 2003; Castro and Azevedo, 2010), which
discretize the domains of continuous signals and then exploit traditional
motif discovery algorithms, ours represents the data as curves – allowing
us to leverage the full statistical arsenal of Functional Data Analysis, from
smoothing, to exploiting the information in derivatives, to providing rigor-
ous significance assessments. Moreover, our approach does not require the
length of the unknown motifs to be fixed, can handle gaps in the data, and
is applicable to multidimensional curves.

At the heart of our Functional Motif Discovery is an algorithm that, given a
minimum length c and a target number of motifs k, performs probabilistic
k-mean clustering with alignment to identify recurrent shapes across the
input curves. The algorithm works in a way very similar to a local alignment
algorithm in bioinformatics (e.g., Altschul et al., 1990; Kent, 2002); it starts
by locating very high similarity “seeds” (short, almost identical portions of
the curves) and attempts to extend these seeds on either side until a running
similarity score gets too low and extension is terminated. Notably, this local
curve alignment differs from the global alignment of a set of curves that
is typically used for registration in Functional Data Analysis. Iterating the
algorithm on multiple initializations of the k-means and different choices
of c and k generates a set of candidate recurrent shapes that is then post-
processed to screen out weaker motifs and locate instances of the stronger
ones along the curves (the latter is akin to a motif search, as opposed to
motif discovery). In addition to the motivating study of high-resolution
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mutation rates profiles, we expect our approach to have a very broad range
of applications in “Omics” research.
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Bayesian distributional structured additive
regression

Nadja Klein1, Thomas Kneib1, Stefan Lang2, Alexander
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E-mail for correspondence: stefan.lang@uibk.ac.at

Abstract: In this talk, we discuss a generic Bayesian framework for inference
in multilevel distributional regression models in which each parameter of a po-
tentially complex response distribution and not only the mean is related to a
multilevel structured additive predictor. The latter is composed additively of a
variety of different functional effect types such as nonlinear effects, spatial ef-
fects, random coefficients, interaction surfaces or other (possibly non-standard)
basis function representations. Particular emphasis is given on a specific form of
multiplicative random effects that scale a particular nonlinear curve while their
overall shape is preserved.
Inference is based on efficient Markov chain Monte Carlo simulation techniques
where a generic procedure makes use of distribution-specific iteratively weighted
least squares approximations to the full conditionals.
The importance and flexibility of Bayesian structured additive distributional re-
gression to estimate all parameters as functions of explanatory variables and
therefore to obtain more realistic models, is exemplified in a detailed case study
on modelling house prices in Austria and Germany.

Keywords: GAMLSS; hedonic regression models, iteratively weighted least squares
proposals, MCMC; multilevel models

1 Introduction

Classical regression models within the exponential family framework, such
as generalised linear models or generalised additive models (GAMs, e.g.
Fahrmeir et al., 2013), focus exclusively on relating the mean of a response
variable to covariates but neglect the potential dependence of higher or-
der moments or other features of the response distribution on covariates.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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As a consequence, the advantage of obtaining covariate effects that are
straightforward to estimate and easy to interpret is at least partly offset by
the likely misspecification of the model that may render inferential conclu-
sions invalid. A completely distribution-free alternative to mean regression
is provided by quantile or expectile regression where the assumptions on
the error term are generalised such that the regression predictor is related
to a local feature of the response distribution, indexed by a pre-specified
asymmetry parameter (the quantile or expectile level), see Koenker (2005)
and Fahrmeir et al. (2013) for recent overviews. Both approaches have the
distinct advantage that basically no assumptions on the specific type of
the response distribution or homogeneity of certain parameters such as the
variance are required. However, this flexibility also comes at a price since
properties of the determined estimates are more difficult to obtain, the
flexibility of the predictor specification is somewhat limited and estimates
for a set of asymmetries may cross leading to incoherent distributions for
the response. Moreover, model choice and model comparison tend to be
difficult since the models only relate to local properties of the response.
Finally, if prior knowledge on specific aspects of the response distribution
is available, quantile and expectile regression may be less efficient and are
also less appropriate for discrete distributions or mixed discrete continuous
distributions.
As a consequence, it is of considerable interest to derive models that are
in between the simplistic framework of exponential family mean regression
and distribution-free approaches. Such an approach is given by the class
of generalised additive models for location, scale and shape (GAMLSS,
Rigby and Stasinopoulos, 2005) in which all parameters of a potentially
complex response distribution are related to additive regression predictors
in the spirit of GAMs. In this talk, we build upon GAMLSS to develop a
generic Bayesian treatment of distributional regression relying on Markov
chain Monte Carlo simulation algorithms. To construct suitable proposal
densities, we follow the idea of iteratively weighted least squares proposals
(Gamermann, 1997, Brezger and Lang, 2006) and construct local quadratic
approximations to the full conditionals.
The full potential of distributional regression is only exploited when the
regression predictor is also broadened beyond the scope of simple linear
or additive specifications. We will consider structured additive predictors
(Fahrmeir et al., 2013, Brezger and Lang, 2006) where each predictor is
determined as an additive combination of various types of functional effects,
such as nonlinear effects of continuous covariates, seasonal effects of time
trends, spatial effects, random intercepts and slopes, varying coefficient
terms or interaction surfaces. All of these approaches can be represented
in terms of possibly non-standard basis functions in combination with a
multivariate Gaussian prior to enforce desired properties of the estimates,
such as smoothness or sparsity.
In a second step, we generalise the approach to a hierarchical or multilevel
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version of regression models with structured additive predictors where the
regression coefficients of a particular nonlinear term may obey another re-
gression model with structured additive predictor. In that sense, the model
is then composed of a hierarchy of complex structured additive regression
models. The proposed model may be regarded as an extended version of a
multilevel model with nonlinear covariate terms in every level of the hier-
archy.
In many applications, the data consists of a number of clusters that can
be regarded as submarkets of one larger market. In general, it is unlikely
that a covariate’s effect on a parameter of the response distribution – be
it its mean or another parameter – is homogeneous across these submar-
kets. In real estate data, for example, a frequently observed phenomenon
is that the price effects of covariates vary from one spatial unit to another.
However, completely different functional forms in each cluster are not com-
mon. In order to deal with this challenge, we suggest the use of cluster
specific random scaling factors. In doing so, one still assumes homogeneity
for the functional form of the response function but allows for heterogene-
ity with respect to its scaling. Lang et al. (2015) and Weber et al. (2016)
successfully have applied this approach to store sales models, thereby con-
siderably improving the predictive validity of the models. Razen and Lang
(2016b) provide a more systematic approach for random scaling factors in
the context of distributional regression.

2 Structured Additive Distributional Regression

We assume that observations on a scalar response variable y1, . . . , yn as
well as covariate information νi, i = 1, . . . , n, have been collected for
n individuals. The conditional distribution of observation yi given the
covariate information νi is assumed to be from a pre-specified class of
K-parametric distributions fi(yi|ϑi1, . . . , ϑiK) indexed by the (in general
covariate-dependent) parameters ϑi1, . . . , ϑiK . Note that fi is considered
a general density, i.e. we use the same notation for continuous responses,
discrete responses and also mixed discrete-continuous responses. Each pa-
rameter ϑik is linked to a semiparametric regression predictor ηik formed
of the covariates via a suitable (one-to-one) response function such that
ϑik = hk(ηik) and ηik = h−1

k (ϑik). The response function is usually cho-
sen to ensure appropriate restrictions on the parameter space such as the
exponential function ϑik = exp(ηik), to ensure positivity, the logit link
ϑik = exp(ηik)/(1 + exp(ηik)) for parameters representing probabilities or
the identity function if the parameter space is unrestricted.
In most applications, linear regression models are too restrictive to cap-
ture the underlying true, complex structure of real life problems. We there-
fore consider structured additive distributional regression models, a generic
framework in which each of the K model parameters ϑk = (ϑ1k, . . . , ϑnk)

′
,
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k = 1, . . . ,K is related to a semiparametric predictor with the general form

ηϑki = βϑk0 + fϑk1 (νi) + . . .+ fϑkJk (νi)

where β0 represents the overall level of the predictor and the functions
fj(νi), j = 1, . . . , Jk, relate to different covariate effects required in the
applications. Note that of course each parameter vector ϑk may depend
on different covariates and especially a different number of effects Jk. To
simplify notation, we suppress this possibility and also drop the parameter
index in the following.
In structured additive regression, each function fj is approximated by a
linear combination of Dj appropriate basis functions, i.e.

fj(νi) =

Dj∑
dj=1

βj,djBj,dj (νi)

such that in matrix notation we can write fj = (fj(ν1), . . . , fj(νn))′ =
Zjβj where Zj[i,dj] = Bj,dj

(νi) is a design matrix and βj is the vector of
coefficients to be estimated. Specific examples can be found in Fahrmeir et
al. (2013).
For regularisation reasons it is common to add a penalty term pen(fj) =
pen(βj) = β′jKjβj that controls specific smoothness or sparseness prop-
erties. The Bayesian equivalent to this frequentist formulation is to put
multivariate Gaussian priors

p(βj |τ2
j ) ∝

(
1

τ2
j

) rank(Kj)

2

exp

(
− 1

2τ2
j

β′jKjβj

)
(1)

on the regression coefficients βj with prior precision matrix Kj which cor-
responds to the penalty matrix in a frequentist formulation. The hyper-
parameters τ2

j are assigned inverse gamma hyperpriors τ2
j ∼ IG(aj , bj)

(with aj = bj = 0.001 as a default option) in order to obtain a data-driven
amount of smoothness.

3 Multilevel data

As outlined in the introduction, in many applications the data is clus-
tered. Real estate data, for example, typically is clustered in spatial units
(e.g. districts, counties, etc.).
We therefore propose a hierarchical or multilevel version of distributional
STAR models, see Lang et al. (2014). That is the regression coefficients
βj of a term fj may themselves obey a regression model with structured
additive predictor

βj = ηj + εj = Zj1βj1 + . . .+Zjqjβjqj + εj , (2)
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where the terms Zj1βj1, . . . ,Zjqjβjqj correspond to additional nonlinear
functions fj1, . . . , fjqj and εj ∼ N(0, τ2

j I) is a vector of i.i.d. Gaussian
random effects. Here, we restrict ourselves to i.i.d. Gaussian random effects
although more sophisticated structures like the Bayesian LASSO, Dirichlet
process mixtures or spike and slab priors can be implemented in a straight-
forward way. Moreover, a third level or even higher levels in the hierarchy
are possible by assuming that the second level regression parameters βjl,
l = 1, . . . , qj , obey again a STAR model. In that sense, the model is com-
posed of a hierarchy of complex structured additive regression models.
The typical application of the proposed models are multilevel data where
a hierarchy of units or clusters grouped at different levels is given. Here,
we will analyze real estate data to model house prizes in Austria.
The hierarchical structure of the Austrian political-administrative units
suggests the use of the following four level predictor for each parameter
being modelled, see also Razen et al. (2016a):

level-1: η = f1(area) + f2(area plot) + f3(age) + f4(time ind)+
f5(municipality) +Xγ

= Z1β1 +Z2β2 +Z3β3 +Z4β4 +Z5β5 +Xγ

level-2: β5 = f5,1(pp ind) + f5,2(ln educ) + f5,3(age ind)+
f5,4(comm) + f5,5(ln dens) + f5,6(district) + ε5

= Z5,1β5,1 +Z5,2β5,2 +Z5,3β5,3 +Z5,4β5,4+
Z5,5β5,5 +Z5,6β5,6 + ε5

level-3: β5,6 = f5,6,1(wko ind) + fmrf5,6,2(district) + f5,6,3(county) + ε5,6

= Z5,6,1β5,6,1 +Z5,6,2β5,6,2 +Z5,6,3β5,6,3 + ε5,6

level-4: β5,6,3 = 1γ0 + ε5,6,3.

(3)

The categorical covariates on level-1, describing the quality and equipment
of the house, are encoded as dummy variables and are subsumed in the
design matrix X with estimated parameters γ. The possibly nonlinear
functions f1,f2, . . . are modeled by Bayesian P-splines (Eilers and Marx,
1996, and Lang and Brezger 2004).
The level-1 equation contains an uncorrelated random municipal effect
f5(municipality), controlling for unordered spatial heterogeneity. This mu-
nicipal specific heterogeneity is modeled through the level-2 equation and is
further decomposed into a district and finally into a county level effect (lev-
els 3 and 4). Furthermore, district specific spatial heterogeneity is modeled

through a correlated spatial effect fmrf5,6,2(district) in the level-3 equation by
Markov random fields, denoted by the superscript “mrf ”, see Fahrmeir et
al. (2013) for details regarding MRFs.
Details regarding Bayesian inference regarding multilevel STAR models are
given in the talk, see also Lang et al. (2014), Klein et al. (2014) and Klein
et al. (2015).



12 Bayesian distributional regression

4 Multiplicative random effects

Usually, there is no economic reason to assume homogeneous covariate ef-
fects across spatial units in real estate data. In contrast, different consumer
price sensitivities originating from varying levels of income, diverse value
of land or different ways of construction suggest spatial heterogeneity in
price response. Indeed, it is reasonable to assume the effects to have the
same functional form but to vary with respect to the scaling of the function.
Thus, in order to account for this kind of heterogeneity, we allow for cluster
specific random scaling factors for some or all of the nonlinear functions
fj . This leads to predictors of the form

ηi = (1 + α1ci) f1(νi) + . . .+ (1 + αJci) fJ(νi), (4)

i = 1, . . . n, where ci ∈ {1, . . . , C} is the cluster index of the respective
observation and the αjci , j = 1, . . . , J , are normally distributed random
effects with mean 0 and variance ψj , i.e.

αjci ∼ N (0, ψj) , ci = 1, . . . , C.

A positive random effect αjc > 0 leads to a scaling up of the function
fj indicating an increased price sensitivity while a negative random effect
αjc < 0 refers to weaker price sensitivity.
A priori, the parameters are not identifiable since there is an arbitrary
multiplicative constant for the functions fj . Therefore we assume

C∑
c=1

αc = 0.

Details regarding Bayesian inference are given in Weber et al. (2016) and
Razen et al. (2016b).
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Abstract: Approximate Bayesian Computation (ABC) has grown into a stan-
dard methodology to handle Bayesian inference in models associated with in-
tractable likelihood functions. In a first part, we will show how our ABC Random
Forests (RF) methodology can be used to select a model in a Bayesian context.
We modify the way Bayesian model selection is both understood and operated, in
that we rephrase the inferential goal as a classification problem, first predicting
the model that best fits the data with RF and postponing the approximation of
the posterior probability of the selected model for a second stage also relying on
RF. Compared with earlier implementations of ABC model choice, the ABC RF
approach offers several potential improvements:

(i) it often has a larger discriminative power among the competing models,

(ii) it is more robust against the number and choice of statistics summarizing
the data,

(iii) the computing effort is drastically reduced (with a gain in computation
efficiency of at least 50) and

(iv) it includes an approximation of the posterior probability of the selected
model.

In a second part, we will consider parameter estimation questions. We advocate
the derivation of a random forest for each component of the parameter vector,
a tool from which an approximation to the marginal posterior distribution can
be derived. Correlations between parameter components are handled by separate
random forests. We will show that this technology offers significant gains in terms
of robustness to the choice of the summary statistics and of computing time, when
compared with the standard ABC solutions.
In the last part, we will cover some population genetics applications.
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Abstract: The United Nations recently issued official probabilistic population
projections for all countries for the first time, using a Bayesian hierarchical mod-
eling framework developed by our group at the University of Washington. These
take account of uncertainty about future fertility and mortality, but not inter-
national migration. We propose a Bayesian hierarchical autoregressive model for
obtaining joint probabilistic projections of migration rates for all countries, bro-
ken down by age and sex. Joint trajectories for all countries are constrained
to satisfy the requirement of zero global net migration. We evaluate our model
using out-of-sample validation and compare point projections to the projected
migration rates from a persistence model similar to the UN’s current method for
projecting migration, and also to a state of the art gravity model. We also resolve
an apparently paradoxical discrepancy between growth trends in the proportion
of the world population migrating and the average absolute migration rate across
countries. This is joint work with Jonathan Azose and Hana Ševč́ıková. It is based
on the following articles, both of which are Open Access:

• http://link.springer.com/article/10.1007/s13524-015-0415-0

• http://www.pnas.org/content/early/2016/05/18/1606119113.abstract
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Abstract: MCMC algorithms for Bayesian computation for Gaussian process
based models under default parameterisations are slow to converge due to the
presence of spatial and other induced dependence structures. The main focus of
this paper is to study the effect of the assumed spatial correlation structure on the
convergence properties of the Gibbs sampler under the default non-centered pa-
rameterisation (NCP) and a rival centered parameterisation (CP), for the mean
structure of a general multi-process Gaussian spatial model. Our investigation
finds answers to many pertinent, but as yet unanswered, questions on the choice
between the two. Assuming the covariance parameters to be known, we compare
the exact rates of convergence of the two by varying: the strength of the spatial
correlation, the level of covariance tapering, the scale of the spatially varying
covariates, the number of data points, the number and the structure of block up-
dating of the spatial effects and the amount of smoothness assumed in a Matérn
covariance function. We also study the effect of introducing differing levels of geo-
metric anisotropy in the spatial model. The case of unknown variance parameters
is investigated by using well-known MCMC convergence diagnostics. A simula-
tion study and a real data example on modelling air pollution levels in London
are used for illustrations. A generic pattern emerges that the CP is preferable in
the presence of more spatial correlation or more information obtained through,
for example, additional data points or by increased covariate variability.
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Abstract: Capture-Recapture methods are used to estimate the size of a tar-
get population of interest when it cannot be completely observed. In capture-
recapture studies just the positive counts of repeated identifications are observed
and we might be able to predict the number of unobserved identifications. Some-
times, additional information on the unobserved units is available through a val-
idation sample. In this paper, we will use the ratio plot to explore the pattern
of the count distribution and a ratio regression approach allowing for the hetero-
geneity naturally present in the data. The guiding principle of the ratio regression
approach is considering ratios of neighbouring count probabilities which can be
estimated by ratios of the observed frequencies (Böhning et al., 2016). After fit-
ting an appropriated regression model the hidden zero-identifications are derived
projecting the model backwards. Simulation studies were conducted to evaluate
the performance of the suggested approach.

Keywords: capture-recapture; zero-truncated model; ratio plot; ratio regression.

1 Introduction and Background

The purpose of this framework is to determine the size N of an elusive
target population. Let us assume that the members of the population are
identified at m observational occasions where m is considered fixed in this
work. For each member i the count of identifications Xi returns a count
in0, 1, ...,m and i takes values from 1 to N . It is assumed that Xi is available
if unit i has been identified for at least one occasion. We have then thatXi is
observed and let X1, ..., Xn denote the observed counts with n representing
the total number of recorded individuals. We assume w.l.o.g. that Xn+1 =

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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... = XN = 0. Let fx be the frequency of units with count X = x. The
population can be described by a probability density function px(θ) which
denotes the probability of exactly x identifications for a generic unit where
px ≥ 0 and

∑∞
x=0 px = 1. Situations of heterogeneity in the population

can be detected by means of the ratio plot which works like a diagnostic
device for the presence of a particular distribution (Böhning et al., 2016).
We can then extend this theory to a regression approach which will consider
the ratios of the observed frequencies and fit a proper model to the data.
Finally, we use the model to derive an estimate for f0. It is possible to
incorporate the information coming from the validation sample into the
modelling and decrease the bias in the estimation process.

2 Case study - Salmonella data

The following data was provided by the Animal and Plant Health Agency,
UK. Human salmonellosis is a major public health concern in Europe and
the most common source of infection is thought to be through the consump-
tion of contaminated eggs (Arnold, 2014).To assess the current prevalence
of infected commercial egg-laying flocks, a European Union wide baseline
survey of Salmonella infection was carried out between October 2004 and
September 2005. The results of that survey were used as a basis for set-
ting flock prevalence reduction targets for Salmonella national control pro-
grammes in each member state of the EU. As part of the baseline survey
in the UK, a randomized sample of 454 commercial layer flock holdings
was tested for Salmonella. It is important to achieve effective control on
the infection at farm level and monitoring Salmonella strains. Hence, it is
crucial that infected flocks are detected so that measures can be taken to
avoid consumption of Salmonella contaminated eggs by the public (Arnold,
2014). In order to be able to monitor the progress of control measures for
Salmonella, it is important to be able to obtain an accurate estimate of the
initial prevalence at the time of the EU baseline survey. Therefore, it is im-
portant to adjust the under-count of disease occurrence appropriately. The
main goal of the present study is to determine the number of undetected
cases, i.e. the number of farms which had Salmonella infected poultry but
for which result in the survey was negative. 53 holdings tested positive for
Salmonella in one or more samples of the survey using a EU baseline survey
method which consists of a total of 7 tests, so each farm could have 0,1,...,7
positives as table 1 shows.

TABLE 1. Positive sample of salmonella data.

x 0 1 2 3 4 5 6 7

fx ? 17 9 5 6 5 5 6
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The same method were conducted in 21 of the farms which established the
validation sample as shown in table 2.

TABLE 2. Validation sample of salmonella data.

x 0 1 2 3 4 5 6 7

gy 3 1 3 2 3 3 4 2

The validation sample also allows to observe infected holdings with all
repeated tests negative.

3 Ratio regression

We are interested in estimating the size N of an elusive target population.
Note that f0 is the frequency of units that were not captured any time
causing a reduction on the observable available sample. To model px =
px(θ) we need to find an estimate θ̂ for θ so that p̂x = px(θ̂). Since we are
dealing with a fixed number of sampling occasions m = 7, we can think
about a binomial distribution to model the data and estimate θ using the
EM algorithm. However, we are working with simple homogeneous models
and, in fact, have not considered the benefits of having a validation sample.
Consequently, we proceed with methodology which allows heterogeneity.
Let us now consider the ratios:

px+1

px
=

(
m

x+ 1

)
θx+1(1− θ)m−x−1(

m
x

)
θx(1− θ)m−x

=
m− x
x+ 1

θ

1− θ
(1)

using the binomial distribution. If we reparametrize these ratios we achieve:

Rx =
x+ 1

m− x︸ ︷︷ ︸
ax

px+1

px
= ax

px+1

px
=

θ

1− θ
(2)

where we used the coefficients ax = x+1
m−x . For the binomial distribution, the

ratio Rx is constant with x and we can estimate Rx by rx = ax
fx+1/N
fx/N

=

ax
fx+1

fx
where fx is the observed frequency of count x. We proceed with the

ratio plot (x 7→ rx) which works as a diagnostic device for this distribution.
In fact, we can expect the graph to show an horizontal line pattern in the
case of a binomial (Böhning et al., 2016).
However, there is no evidence of a horizontal line in figure 1 (left panel),
independent of whether we consider the validation or the positive sample.
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FIGURE 1. Left panel: ratio plot for the validation sample (solid points) and for
the positive sample (empty triangles) with respective regression lines, continuous
for the validation and dashed for the positive sample; Right panel: regression lines
of log ratio on x, continuous for positive sample, dashed for validation sample,
the estimated regression model is −2.04 + 0.66x− 0.12S.

Instead, we observe a positive line pattern. The ratio plot suggests a regres-
sion model taking advantage of the straight line pattern to determine an es-
timate of f0 (Böhning et al., 2016). Namely, as log(rx) = α+βx+εx, an esti-

mate of f0 can be found using log
(
a0

f1
f0

)
= α̂+β̂×0, or, f̂0 = a0f1exp(−α̂).

4 Ratio regression using validation information

This approach can be extended to incorporate the information coming from
the validation sample into the ratio regression model. Considering our data,
it can be done as follows:

log(rx) = α+ βx+ δS + εx (3)

where S represents a dummy variable taking the value of 1 if x is from the
positive sample and 0 otherwise. With this approach we allow a regression
line for the two samples having the same slope but different intercepts as
figure 1 (right panel) shows. The resulting estimate f̂0 = f1exp(−α̂−δ̂) is 25
undetected farms. Here f1 is the frequency of ones from the positive sample.
Note that if δ = 0 both lines become identical and we allow for a single
straight line regression model. The use of a validation sample increases
the efficiency of our estimation as well as it guarantees that our model
provides a reasonable final estimative (Böhning, 2016). We can also consider
a model with interaction between the variable S and count x. However, in
the case of interaction, the model becomes identical to fitting two separate
lines and the benefit of the validation sample diminishes. A zero-inflated
model was also considered as it appears we have a large quantity of zeros
in addition to those predicted by the non-inflated models. We conducted
simulations based on these models and the results show evidence that using
the validation sample not only decreases the bias in our estimation, but also
leads to more accuracy in the estimation of the population size.
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5 Application to the case study

The three models (single line, parallel lines, separate lines) were applied
to the salmonella data and the results are presented in table 3. Note that
n = 53 for the positive sample and the coefficients ax obey the binomial
distribution in our analysis.

TABLE 3. Estimates of the population size N ; RR denotes the ratio re-
gression approach, PI denotes the prediction interval for the estimate and
S the variable indicating type of sample (S = 1: positive sample). The
model equation for the ratio regression model using just the positive sample
is −2.47 + 0.75x; for model 1 (single line) we have −2.30 + 0.70x; for model
2 (parallel lines) is −2.21 + 0.70x − 0.12S and for model 3 (separate lines) is
−1.85 + 0.60x − 0.63S + 0.15(S × x); column 6 refers to the p-value of the last
coefficient of the respective model.

Application f̂0 PI for f0 N̂ PI for N p-value

RR Positive 29 (1.01,56.63) 82 (54.02,109.64) 0.000

Model 1 24 (3.65,44.90) 77 (56.65,97.90) 0.000

Model 2 25 (1.49,48.35) 78 (54.49,101.35) 0.660

Model 3 29 (5.98,51.68) 82 (58.98,104.68) 0.316

We obtained 29 undetected farms using just the positive sample. Model
3 provides exactly the same results as we expect. The interaction term
is not significant in model 3. The simple regression model (model 1) and
the parallel lines model (model 2) produce a very similar result. Model 1
indicates 24 undetected farms while model 2 suggests 25 undetected farms.
Table 3 includes the estimates for the coefficients of each model as well
as prediction intervals for each estimate. As model 2 has a non-significant
term for S, we conclude that model 1 is most suitable in our case and the
estimate for f0 is 24 with the shortest prediction interval.

6 The inflated model

The previous modelling does not allow for any zero-inflation. Zero-inflation
would lead to a first ratio potentially much lower than the others. To ac-
count for zero-inflation, at least in an approximate way, we suggest the
model log(Rx) = α+βx+δS+λx2 estimated as log(rx) = −2.47+0.94x−
0.13S − 0.04x2. This model will allow a bend in the upper straight line
corresponding to the positive sample and at the same time taking advan-
tage of the validation sample. A total of 33 undetected farms were obtained
employing this model as table 4 shows. In other words, a population size of
86 farms. Here, the question arises, if this kind of approach performs well
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on our data. As it turns out, the quadratic term is not significant. In fact,
the best model here is the single line model (details not reported here).
We conducted simulations that show that the estimation of N using the
inflated model, with the validation sample incorporated, produces substan-
tially better results in terms of precision along with an enormous reduction
in the bias.

TABLE 4. Estimate of the population size N for the zero-inflated model according
to the model equation log(rx) = −2.47+0.94x−0.13S−0.04x2; column 6 refers to
the p-value of the last coefficient of the model; PI denotes the prediction interval
for the estimate and S denotes the variable S.

Application f̂0 PI for f0 N̂ PI for N p-value

Inflated model 33 (-8.36,73.63) 86 (44.64,126.63) 0.437

7 Conclusion

The ratio regression approach was discussed and it could be seen how the ra-
tio regression approach for the positive sample could be extended to include
information from the validation sample, the untruncated sample including
also zero counts which are not observed in conventional capture-recapture
settings. Including validation samples will reduce bias and increase effi-
ciency. The identical model might be used for positive and validation sam-
ple, or a partly congruent model such as the parallel lines model, or two
separate models such as the separate lines model. In the latter case, there
is no gain in efficiency. Using the ratio regression approach there are nu-
merous ways in selecting the right model. We have focused here on the
Wald-statistic selecting significant coefficients. Other ways would be the
likelihood ratio statistic or model selection criteria such as AIC (Böhning
et al., 2016). We see the most important aspect of the use of validation
information in the fact that more trust can be developed in the model for
the unobserved part.
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Böhning, D., Rocchetti, I., Alfó, M., Hollings, H. (2016). A flexible ratio re-
gression approach for zero truncated capture-recapture counts. Bio-
metrics DOI: 10.1111/biom.12485.
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1 Cumulative Models for Location and Dispersion

Let Yi ∈ {1, . . . , k} denote the response and xi a vector of explanatory vari-
ables. With πi(r) = P (Yi ≤ r|xi) the basic form of the simple cumulative
regression model is given by

πi(r) = F (θr + xT

i β), r = 1, . . . , k − 1, (1)

where βT = (β1, . . . , βp) and F (·) is a cumulative distribution function,
see, for example, the seminal paper of McCullagh (1980) or Agresti (2010).
By choosing F (·) as the logistic distribution function one obtains the most
widely used proportional odds model. An attractive feature of the model
is the easy interpretation of parameters. If the fit of this simple model
is unsatisfactory one often uses an extended version of the model with
category-specific parameters. That means the predictor is replaced by θr +
xT
i βr. The corresponding partial proportional odds model was, inter alia,

investigated by Brant (1990) and Peterson and Harrell (1990). However,
a lack-of-fit can also be caused by an insufficient modelling of dispersion
effects.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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A cumulative type model that accounts for dispersion effects, also called
location-scale model, was introduced by McCullagh (1980) and is given by

πi(r) = F

(
γ0r + xT

i β

τxi

)
, r = 1, . . . , k − 1, (2)

where an additional scale parameter τxi is included. Of course, one has to
find appropriate ways to link the dispersion parameter to the covariates xi.
For example, one can use τxi =exp(xT

i γ). Model (2), is highly non-linear
and not a member of the class of generalized linear models. Here we propose
a model that models dispersion by including specific effects in the linear
predictor of model (1), to obtain a model that can be estimated within the
generalized linear model framework.
Let us consider the case of a symmetric response, for example with cate-
gories of agreement as strongly disagree, moderately disagree,...,moderately
agree, strongly agree and an even number of response categories k. Then
m = bk/2c splits the response categories into equally sized sets. With an
additional vector of explanatory variables zi, which can be the same or
different from xi, the thresholds θr in the proposed extended cumulative
model are determined by

θr = β0r − srzT

i α, r = 1, . . . ,m− 1

θm = β0m

θr = β0r + srz
T

i α, r = m+ 1, . . . , k − 1.

While the middle threshold θm remains fixed, the lower and upper thresh-
olds are shifted by δ = srz

T
i α, where sr are scale values that reflect the

distance between categories r and m. If δ is positive the intervals defined by
the thresholds are widened, indicating weaker dispersion, if δ is negative the
intervals are shrunk, indicating stronger dispersion. If one simply chooses
s1 = . . . = sk−1 = 1, all the thresholds are shifted away from the middle by
the value δ = zT

i α. A more attractive choice is obtained by shifting of the
thresholds proportional to the distance from the middle threshold. Then
one uses sr = m − r for r = 1, . . . ,m and sr = r −m for r = 1, . . . , k − 1
to obtain the model

πi(r) = F (β0r + xT

i β − (m− r)zT

i α), r = 1, . . . ,m

πi(r) = F (β0r + xT

i β + (r −m)zT

i α), r = m+ 1, . . . , k − 1.
(3)

The effect is that the intervals for all categories are widened or shrunk by
the value δ = zT

i α. It is easily derived that for δ →∞ one obtains P (Y =
m|xi, zi) + P (Y = m + 1|xi, zi) → 1, which means a tendency towards
the middle categories and therefore weak dispersion. For an odd number of
response categories k there is a neutral middle category m = bk/2c+ 1. In
this case the widening of intervals by the fixed value δ yields the model

πi(r) = F (β0r + xT

i β − [(m− r − 1) + 1/2]zT

i α), r = 1, . . . ,m− 1

πi(r) = F (β0r + xT

i β + [(r −m) + 1/2]zT

i α), r = m, . . . , k − 1.
(4)
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Since models (3) and (4) are defined by a shifting of thresholds they are
called location-shift models with location parameters β and dispersion pa-
rameters α.

2 Interpretation of Parameters

For simplicity we consider an even number of response categories k and
one-dimensional x and z. If x and z are distinct it is easily derived that
in model (3) and (4) the proportional odds assumption still holds for x.
With γ(r|xi, zi) = P (Y ≤ r|xi, zi)/P (Y > r|xi, zi), denoting the odds for
categories smaller or equal r, the location parameter β is given by

eβ =
γ(r|xi + 1, zi)

γ(r|xi, zi)
.

That means, if xi increases by one unit the cumulative odds for each cate-
gory change by the factor eβ . For the dispersion parameter α one obtains

e−(m−r)α =
γ(r|xi, zi + 1)

γ(r|xi, zi)
, r ∈ {1, . . . ,m}

e(r−m)α =
γ(r|xi, zi + 1)

γ(r|xi, zi)
, r ∈ {m+ 1, . . . , k − 1}.

Thus, if zi increases by one unit the cumulative odds for categories r < m
change by factor e−(m−r)α and for categories r > m by the factor e(r−m)α.
For α > 0 the probabilities for extreme categories get smaller, which means
a stronger concentration in the middle. If x = z the interpretation of pa-
rameters is similar. For the cumulative odds one obtains

γ(r|xi + 1)

γ(r|xi)
=

{
eβe−(m−r)α, r ∈ {1, . . . ,m}
eβe(r−m)α, r ∈ {m+ 1, . . . , k − 1}.

Thus eβ represents the odds ratio for categories smaller or equal m if xi
increases by one unit. This basic preference is modified by factor e−(m−r)α

for categories r < m and by factor e(r−m)α for categories r > m.
For an odd number of response categories the interpretations are the same,
but they hold for different response categories.

3 Computation of Parameters and Implementation

The strength of the proposed location-shift models is that they can be
embedded within the framework of multivariate generalized linear models
(GLMs), which allows to use known asymptotic results and goodness-of-
fit tests for this class of models. The models have the form g(πi) = Xiδ,
where πT

i = (πi1, . . . , πi,k−1) is the vector of response probabilities with
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TABLE 1. Quality of right eye vision in men and women.

Vision Quality
Highest (1) 2 3 Lowest (4)

Men 1053 782 893 514
Women 1976 2256 2456 789

TABLE 2. Parameter estimates and standard errors for quality of eye vision data.

Covariate Proportional Odds Model Location-Shift Model
estimate std error z value estimate std error z value

Intercept1 -0.905 0.034 -26.613 -0.721 0.037 -19.397
Intercept2 0.293 0.033 8.911 0.236 0.033 7.104
Intercept3 2.005 0.039 50.398 1.710 0.045 37.563

gender (female)
location -0.038 0.038 -1.003 0.042 0.038 1.109
dispersion 0.353 0.031 11.348

components πir = P (Yi = r|xi, zi), Xi is a design matrix constructed
from the predictors xi and zi, δ is the total parameter vector and g(·) is a
vector-valued link function. For details of the representation as a multivari-
ate GLM see Tutz (2012). Estimates can be obtained by using the function
vglm() implemented in the R-package VGAM (Yee, 2010), which allows to
compute so-called vector generalized linear models. By appropriate spec-
ification of the design matrix that includes the z-variables in the specific
form the proposed location-shift model with dispersion effects can easily
be obtained.

4 Application

For illustration we consider an example that has already been used by Mc-
Cullagh (1980). Table 1 gives Stuart’s (1953) quality of eye vision data for
men and women. From the data it is obvious that women are more concen-
trated in the middle categories while men have relatively high proportions
in the extreme categories. The estimated coefficients and corresponding
standard errors of the simple proportional odds model and the proposed
location-shift model (3) are shown in Table 2. It is seen that in both mod-

els the location effect (β̂ = −0.038 and β̂ = 0.042) is rather weak and
not significant at significance level α = 0.05. In contrast the dispersion
parameter in the location-shift model α̂ = 0.353 can definitely not be ne-
glected. The deviance of the proportional odds model is 128.39 on 2 df but
reduces to 5.896 on 1 df for the model with location and dispersion effect.
The estimated factor e−α̂ = 0.70 decreases the odd for category 1 and
eα̂ = 2.01 increases the odd for categories smaller or equal 3 for females
when compared to males.
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FIGURE 1. Parameter estimates and deviances of model fits for sub-samples of
size n = 200 from the quality of eye vision data.
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FIGURE 2. Deviances for data generated by the location-scale model (first row)
and data generated by the corresponding location-shift model (second row).

5 Comparison of Models

In the proposed location-shift models (3) and (4) the dispersion is modelled
by an explicit shifting of the thresholds determined by the parameters α.
In contrast, in the location-scale model (2) the dispersion is generated by
the scale parameter τxi and the effect is multiplicative on the thresholds.
Although the two models are not equivalent we found that in applications
the differences in terms of goodness-of-fit can be rather small.
We first consider again the eye vision data example (Table 1). Figure 1
shows the estimated location effects, dispersion effects and the deviances
of the two models based on 100 sub-samples of size n = 200. It is seen
that the estimates and deviances show strong correlation. In particular the
deviances of the two models are very close.
Secondly, we illustrate the fitting in a small simulation study. We consider
two binary covariates with β> = (0.5, 0.5), k = 5 response categories and
thresholds θr ∈ {−2, . . . , 2}. The first row of Figure 2 shows the result-
ing deviances for data generated by the location-scale model with varying
strength of dispersion (parameter γ) in the first variable. In order to match
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the strength of dispersion we computed the parameter α of the location-
shift model that corresponds to the parameter γ of the location-scale model.
Then data were generated by the locations-shift model. It is important to
note that the relation between the two parameters is non-linear. The re-
sulting deviances are shown in the second row of Figure 2. It is seen that
the deviances of the two models are quite close with just slightly better fits
of the data generating model. If, however, the dispersion is ignored and a
simple proportional odds model is fitted (no disp), the fit suffers strongly.
Further investigations show that the omission of present dispersion effects
does not only yield large deviances but in particular reduces the accuracy
of estimates of the location effects.

6 Link to the Partial Proportional Odds Model

To yield a better model fit an alternative to include dispersion effects is to
introduce category-specific parameters. In the case of three response cate-
gories (k = 3) and x = z the two predictors of the location-shift model are
ηi1 = β01 + x>i β − x>i α and ηi2 = β02 + x>i β + x>i α. This is equivalent
to ηir = β0r + x>i βr, where β1 = β − α, β2 = β + α. Therefore, the
location-shift model is equivalent to the partial proportional odds model.
Nevertheless, there are some benefits when using the location-shift param-
eterization. With the hypothesis H0 : αj = 0 it can directly be tested, if
the j-th variable has a global effect. The equivalent hypothesis within the
partial proportional odds model is H0 : βj1 = βj2, which typically makes
refitting of the model under constraints necessary and interpretation of
effects less accessible.
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Abstract: Recently novel recursive partitioning techniques have been proposed
that allow for the detection of differential item functioning (DIF) being induced
by an arbitrary number of covariates. While several methods are available for the
simple binary Rasch model the extension to rating scale items is still in its infancy.
In the present paper we propose item focussed trees for the ordinal Partial Credit
Model (PCM). The new procedure is compared to a global recursive partitioning
approach for DIF detection in PCMs proposed by El-Komboz et al. (2014).
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1 Introduction

For proper measurement, psychometric test models generally assume that
test and measurement properties are stable across individuals what is also
known as measurement invariance (Millsap, 2012). However, there is a
strong possibility that different groups of people react differently on the
same test and therefore validity of studies on measurement properties is
threatened. Also, test fairness may be violated when test diagnoses lead
to different conclusions for different groups of people. When measurement
equivalence is violated on the item level it is called item bias or differential
item functioning (DIF). DIF is present when one item is significantly more
difficult for one group than for the other after controlling for the underlying
ability or trait. For an overview of methods for the detection of DIF, see
Magis et al. (2010) and Holland and Wainer (1993).
Recently a strategy was proposed that is able to detect DIF in Rasch models
generated by multiple covariates. It uses recursive partitioning techniques,

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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often called tree methods. The strong advantage of the method is that no
pre-specified subgroups are needed. One has to distinguish between two
quite different forms of recursive partitioning method in DIF detection.
Strobl et al. (2015) proposed a global recursive partitioning technique for
the partial credit model (PCM) called PC trees. Here, the covariate space
is recursively partitioned to identify regions of the covariate space in which
item parameters differ. Regions are suspected to be relevant if the param-
eter estimates in the regions differ strongly. Therefore, regions in the co-
variate space are identified that show different difficulties. A disadvantage
of the method is that it remains unknown which of the items show DIF.
In order to overcome this problem, Tutz et al. (2015) suggested the Item
focussed tree (IFT) method for the detection of DIF for single items in the
binary Rasch model. Recursive partitioning is used on the item level not
on the global level. In contrast to the PC tree it directly identifies items
that carry DIF. Since the method is able to flag DIF items it is referred to
as item-focussed trees (IFTs). El-Komboz et al. (2014) extended the PC
tree approach to models with multiple categories. In the following also the
IFT approach is extended to allow for DIF detection in the partial credit
model.

2 DIF in Partial Credit Models

In the following we consider I items with ordered categories and P persons.
For simplicity we assume that the number of categories K is equal across
items.
Let the data be given by the response on a rating scale Ypi ∈ {0, 1, . . . ,K},
of person p on item i. The partial credit model (PCM), which was proposed
by Masters (1982), assumes for the probabilities

P (Ypi = r) =
exp

∑r
l=1 θp − δil∑K

s=0 exp(
∑s
l=1 θp − δil)

r = 0, . . . ,K

where θp is the parameter for person p and (δil, . . . , δiK) are the item pa-
rameters of item i. For notational convenience, the definition of the model
uses implicitly

∑0
l=1 θp − δil = 0.

The link to the binary Rasch model becomes obvious if one considers re-
sponses in adjacent categories. Given response categories r and r − 1, the
presentation

log
P (Ypi = r)

P (Xpi = r − 1)
= θp − δir, r = 1, . . . ,K (1)

shows that the model is locally a binary Rasch model with person parameter
θp and item difficulty δir.
Therefore, it is possible to embed the partial credit model into the frame-
work of vector generalized linear models (VGLMs; Yee and Wild, 1996).
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For the item responses one assumes a multinomial distribution Ypi|xp ∼
M(1,πpi), where π>pi = (πpi1, . . . , πpiK) with components πpir = P (Ypi =
r|xp). The link function has the form

g(πpir) = ηpir = log

(
P (Ypi = r)

P (Ypi = r − 1)

)
= (1(P )

p )>θ − (1(k)
r )>δi, (2)

where θ> = (θ1, . . . , θP ), δ>i = (δi1, . . . , δiK) and 1
(k)
r denotes the unit

vector of length k with a 1 in component r. To ensure the identifiability of
the model one parameter has to be fixed. In the following we set θP = 0.
By defining the whole parameter vector β> = (θ>, δ>1 , . . . , δ

>
I ) the PCM

can be written in the closed form

ηpir = zpirβ,

where zpir is the design vector for person p, item i and threshold r that
has to be specified accordingly.
For the implementation of the vector generalized model we make use of the
function vglm of the package VGAM (Yee, 2010). One just has to specify the
design matrix as described above and estimation can easily be obtained. In
addition one can make use of the argument parallel() to specify category-
specific item parameters. In the following algorithm for item focussed trees
this estimation procedure serves as building block in each iteration. All
the results presented in this article were obtained by an R program that is
available from the authors.

3 Fitting Trees

When growing trees one has to take two decisions in each step. One has to
determine the best split due to an optimality criterion and has to decide if
the split is relevant or not. In contrast to alternative approaches the trees
are not pruned to an adequate size afterwards. By early stopping the size
of the trees is directly controlled beforehand.
Let xTp = (xp1, . . . , xpV ) denote a person specific covariate vector of length
V. To determine the first split one examines for all the items, all the vari-
ables and possible split-points the PCM with predictors

ηpir = θp − [γir(1)I(xpv ≤ cvj) + γir(2)I(xpv > cvj)], r = 1, . . . , k.

where I(·) denotes the indicator function with I(α) = 1 if α is true and
I(α) = 0 otherwise.
Here cvj indicates the split point j in variable v. The parameter γir(l)
denotes the threshold parameter of item i and threshold r in the left node
(xpv ≤ cvj) and γir(r) in the right node (xpv > cvj). This parameter may
differ across thresholds within one item which means that not all thresholds
within one item are shifted by an equal amount.
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DIF occurs, if γi(1) 6= γi(2). The corresponding hypothesis H0 : γi(1) −
γi(2) = 0 can be tested by a likelihood ratio (LR) test. One simply selects
the combination of item, variable and split-point that yields the smallest
p-value, which is equivalent to select the model with minimal deviance. In
later steps the basic procedure is the same. One performs LR-tests test-
ing the two parameters that are involved in the splitting and selects the
combination as the optimal one that yields the smallest p-value.
In order to determine the optimal size of the trees one has to decide in each
step if the split should be performed or not. In answering this question one
investigates the dependence of the response and the selected variable. For
fixed item i and variable v let the maximal value statistic Tv = maxcvTvcv
be defined as the maximum of all the LR test statistics Tvcv , where cv is
from the set of possible split points. Typically the test statistics Tvcv are
strongly correlated. The relevance of variable v is judged by the p-value of
the distribution of Tv, which is not influenced by the number of split-points,
since it has already taken into account, see e.g. Hothorn and Lausen (2003).
For the decision on the null hypothesis controlling for a given significance
level α a permutation test is used. Thus no distributional assumption has to
be made. The test statistic Tv is computed based on a data matrix in which
variable v is randomly permuted. The maximal value statistics for a large
number of permutations provide a distribution of Tv under the assumption
of the null hypothesis that variable v has no effect. The derived p-value is
used to make the splitting decision.
Finally one has to address the problem of multiple testing. In DIF detection
one typically controls for the type I error, that is, the item-wise significance
level. To ensure that the proposed procedure also controls this level a Bon-
ferroni adjustment is applied when multiple variables are available. For
fixed item and variable the local significance level for one permutation test
is set to α/V , where V is the number of variables. Using this adaption the
probability of a false DIF result or the probability of falsely identifying at
least one variable as responsible for DIF is controlled by α.
For determining when to stop splitting, we use two different criteria: 1. The
minimum sample size of P = 30 per node and 2. No (additional) significant
permutation test. The significance of model improvement was determined
by using a permutation test.

4 Simulation studies

In two simulation studies, the proposed procedure was compared to the
alternative PC tree approach. In one simulation, only one binary covariate
was simulated that induces DIF of three different strengths. Additionally,
the number of items and the number of categories per item were varied.
Results of this simulation are shown in Table 1.
Percentages of significant test results are shown. For PC tree these have to
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TABLE 1. Results of Simulation I: Percentages of significant test results for
both procedures

DIF strength PC tree PCM-IFT
TPR FPR

8 Items with 3 categories
no DIF 0.100 - 0.048
weak 0.180 0.193 0.068
medium 0.660 0.560 0.124
strong 1.000 1.000 0.036

8 Items with 5 categories
no DIF 0.040 - 0.060
weak 0.220 0.260 0.064
medium 0.860 0.847 0.076
strong 1.000 1.000 0.080

20 Items with 3 categories
no DIF 0.060 - 0.047
weak 0.140 0.233 0.054
medium 0.580 0.780 0.056
strong 1.000 1.000 0.053

be interpreted as false posite rates (FPR) in the no DIF condition, as a
true positive rates (TPR) in all other conditions.
Results show that the new procedure can compete with the alternative one.
For 20 Items (scenario 3), PCM-IFT yields the best results.

5 Application

As an example we consider the norm data from the German version of the
personality test NEO-PI R (Ostendorf & Angleitner, 2004). It is designed
to measure personality in five domains. An example tree of Item 6 of the
sub-facet Fantasy of the domain Opennes to experiences is shown in Figure
1.
At the terminal nodes, the four threshold parameters for the respective par-
tition are shown in a graphical representation. It can be seen that threshold
parameters differ between the three groups that were built by one split for
the variable gender and one split for the covariate age.
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Abstract: We consider State Space Models (SSMs) as Discrete Time Markov
Chains (DTMC) to describe a stochastic SIR Epidemic dynamic. The unknown
static parameters are estimated by combining Sequential Monte Carlo and Markov
Chain Monte Carlo algorithms (SMC-within-MCMC) also known as Particle
Marginal Metropolis-Hastings (PMMH). The performances of the strategy are
evaluated using simulations. The method is illustrated by modeling the spread of
a viral infection in a small community.
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1 Introduction and context

The following data provide the evolution of the number of the new infected
subjects in a small community (N = 40) over a 21-day period during a
Common-Cold epidemic on the island of Tristan da Cunha (see Table 1,
Shibli et al., 1971).

TABLE 1. Common-cold epidemic data on the island of Tristan da Cunha.

Day 1 2 3 4 5 6 7 8 9 10 11 12 ... 21

# new cases 1 0 2 4 4 6 4 5 1 3 3 1 ... 0

We suggest to use the stochastic SIR model pictured in Figure 1 to describe

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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the propagation of the epidemic. It is given by the following set of equations

St = St−dt − dI+
t−dt,

It = It−dt + dI+
t−dt − dR

+
t−dt, (1)

Rt = Rt−dt + dR+
t−dt,

where the capital letters indicate the total number of susceptible (St), in-
fectious (It) and recovered (Rt) subjects at time t, and dI+

t−dt and dR+
t−dt

provide the number of new entries (also known as increments or innova-
tions) in each corresponding state from (t − dt) to t. The time step dt is
chosen small enough to ensure that a single person can only experience at
most one state transition during (t− dt, t).

S I Rβ I/N γ

FIGURE 1. Graphical representation of a SIR model.

The innovations are assumed Poisson distributed:

(dI+
t−dt|St−dt, It−dt,θ) ∼ Pois

(
ψSt−dt

It−dt
N dt

)
(dR+

t−dt|It−dt,θ) ∼ Pois(γIt−dtdt),

with θ = (ψ, γ) and ψ = βπ where γ is the recovery rate and β is the average
number of contacts per susceptible subject during (t− dt, t) that lead to a
disease transmission with probability π when involving an infectious person.

2 A State-space model (SSM) formulation

The aforementioned stochastic SIR model verifies the Markov process prop-
erties (Särkkä, 2013) and therefore can be treated as a SSM. It consists of
a sequence of conditional probability distributions:

(xt|xt−dt,θ) ∼ fθ(xt|xt−dt) (2)

(yt|xt,θ) ∼ gθ(yt|xt) (3)

where xt ∈ Rn (t = 0, dt, 2dt, ..., T and n ∈ N∗) denotes the (hidden)
states of the system and yt ∈ Rq (t = dt, 2dt, ..., T and q ∈ N∗) is the
vector of observed measurements. The function fθ(xt|xt−dt) describes the
stochastic dynamic in the system and gθ(yt|xt) connects the observed data
to the latent states. Prior distributions on θ (θ ∼ p(θ), with θ ∈ Θ ⊆ Rd:
d ∈ N∗) and on the state x (x0 ∼ µθ(x0)) complete the model specifica-
tion. If (only) the number of newly infected subjects were reported every
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dt units of time, then the connection to our epidemic SIR model could be

obtained by setting xt = (St, It, Rt)
T and yt = dI+(obs)

t−dt .

Bayesian inference relies on the posterior density for the unknown quanti-
ties:

p(θ,x0:T |ydt:T ) ∝ pθ(x0:T ,ydt:T )p(θ)

= µθ(x0)

∏
t≥dt

fθ(xt|xt−dt)gθ(yt|xt)

 p(θ). (4)

There are generally no closed form expressions for p(θ,x0:T |y1:T ) in the
context of non-linear non-Gaussian models. That makes inference difficult
for θ and the hidden states x0:T (Andrieu et al., 2010). But SMC and
MCMC methods can be combined to approximate the posterior densities
sequentially, see Section 3.

3 Particle Marginal Metropolis-Hastings (PMMH)

Also named SMC-within-MCMC, PMMH is an hybridization of two algo-
rithms: one for the state approximation and the other one for static param-
eter estimation. To achieve this, we need, first, to compute the so-called
Marginal likelihood and the weights of particles representing possible state
trajectories obtained by Monte Carlo simulation.

Assume that the innovations were observed in an aggregated way over the
time interval of length:

4 = δdt with δ ∈ N∗.

It corresponds to 1-day period in our application. Denote by ytt−4 the
number of new cases reported during (t−4, t). The previous report on the
aggregated number of new cases provided information on the state values
till time (t − 4 − dt). Possible trajectories for the state vectors can be
generated sequentially using (2) by steps of dt units of time till (t − dt).
Conditionally on a state trajectory, the probability to observe ytt−4 can be
calculated to enter the computation of the plausibility of the state updates.

Our proposal works iteratively as follows. Assume that P state trajectories
(named particles) were generated till time (t−4− dt):

x
(i)
0:t−4−dt = (x

(i)
0 ,x

(i)
dt ,x

(i)
2dt, . . . ,x

(i)
t−4−dt) : i = 1, . . . , P,

with posterior probability w
(i)
t−4−dt given data (y40 ,y

24
4 , . . . ,yt−4t−24).
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For i = 1, . . . , P , do:

• Update the ith trajectory by sampling new state values sequentially
using (2):

(xit−4|xit−4−dt,θ) ∼ p(xit−4|xit−4−dt,θ)

(xit−4+dt|xit−4,θ) ∼ p(xit−4+dt|xit−4,θ) (5)

...

(xit−dt|xit−2dt,θ) ∼ p(xit−dt|xit−2dt,θ)

• Given that ytt−4 =
∑δ
k=1 yt−4+kdt

t−4+(k−1)dt and (3), one can conclude

that (ytt−4|x
(i)
t−4, . . . ,x

(i)
t−dt) ∼ Pois(µt−dt

(i)

t−4 ) where

µt−dt
(i)

t−4 = ψ

(
S

(i)
t−4

I
(i)
t−4
N

+ . . .+ S
(i)
t−dt

I
(i)
t−dt
N

)
dt. (6)

End for.

Therefore, the plausibility of the ith updated trajectory can be computed
recursively as follows:

wi
t−dt ∝ wi

t−4−dt dpois(ytt−4 = dIt
(obs)

t−4 , µt−dt
(i)

t−4 ) (7)

Building upon these ideas, we extend the Bootstrap particle filter (SMC)
algorithm (Andrieu et al., 2010) to estimate the states of the system model:

Algorithm 1 : State estimation in a SIR epidemic model using the Boot-
strap Particle Filter (BPF) given θ:

1. A time t = 0, initialize each particle i (i = 1, . . . P ) by sampling

x
(i)
0 ∼ pθ(x0), and set the particle weights to w

(i)
0 = 1/P .

2. For t = 4, . . . , T = τ4, do:

(a) Resample the particles (x
(i)
0:t−4−dt,w

(i)
t−4−dt) resulting in equally

weighted particles {(x̃(i)
0:t−4−dt, 1/P ), i = 1, . . . , P};

(b) Update the particle trajectories using (5), yielding x
(i)
0:t−dt;

(c) Compute the weights w
(i)
t−dt using (7), then:

w
(i)
t−dt ←− w

(i)
t−dt/

P∑
j=1

w
(j)
t−dt;
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(d) Compute the state estimate (or more exactly, the expected state

value) as follows: x̂P0:t−dt =
∑P
i=1 w

(i)
t−dtx

(i)
0:t−dt;

End for.

The logarithm of the marginal likelihood:

pθ(y0:τ4:4) = pθ(y40 , . . . ,y
τ4
τ4−4)

= pθ(y40 )

τ∏
s=2

pθ(ys4(s−1)4|{y
k4
0:(k−1)4 : k = 1, . . . , s− 1}) (8)

can be approximated sequentially using the particle weights, yielding:

log pθ(y0:τ4:4) =

T∑
s=1

log

(
1

P

P∑
i=1

w(i)
s

)
. (9)

Then, we sequentially estimate the unknown parameter θ by using the
PMMH algorithm (Andrieu et al., 2010):

Algorithm 2 : Static parameter estimation in a SIR epidemic model using
the PMMH scheme:

1. Initialization (m = 0):

(a) Set an arbitrary θ0;

(b) Run the (SMC) Algorithm 1 to sample x0
0:T−dt ∼ p̂θ0(.|y0:T−4:4)

and let p̂θ0(y0:τ4:4) denote the marginal likelihood estimate
(see Algorithm 1) at that iteration;

2. MCMC step in a for loop (m ≥ 1):

(a) Sample θ∗ ∼ q(.|θm−1) (a proposal distribution for θ);

(b) Run Algorithm 1 to sample x∗0:T−dt from pθ∗(.|y0:τ4:4) yielding
weighted trajectories for the states. Then compute the marginal
likelihood estimate p̂θ∗(y0:τ4:4).

(c) With probability:

1 ∧ p̂θ∗(y0:τ4:4)p(θ∗)
p̂θm−1(y0:τ4:4)p(θm−1)

q(θm−1|θ∗)
q(θ∗|θm−1)

,

set θm = θ∗; xm0:T−dt = x∗0:T−dt and p̂(y0:τ4:4|θm) = p̂(y0:τ4:4|θ∗).

Otherwise, θm = θm−1; xm0:T−dt = xm−1
0:T−dt and p̂(y0:τ4:4|θm) =

p̂(y0:τ4:4|θm−1).
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4 Simulation and application

Five hundred datasets were simulated using the SIR model in (1) with pa-
rameter values selected to mimic the observed dynamic in the application.
Two values for dt (1 and 1/4) were considered (with 4 = 1 day) and three
different numbers (100, 500, 1000) of particles were tried in the inference
procedure (see Section 3). It revealed that taking P = 500 particles en-
ables to estimate the model parameters and the states consistently with no
major effect of dt on the results. Application to the real data is made for
dt = 1/4, P = 500 particles and M = 500000 iterations with a pilot run to
select the variance-covariance matrix in the multivariate normal proposals
for parameters. The mixing of the chains was very good with a non signifi-
cant autocorrelation after a 20 iteration lag. The parameters were estimated
as follows (with 95% credible intervals in brackets): ψ̂ = 0.020 (0.012, 0.033)
(see Figure 2 a.); γ̂ = 0.230 (0.012, 0.611) (see Figure 2 b.). Figure 2 c. il-
lustrates the scatterplot of the two parameters. These results suggest that
a stochastic representation of dynamic models combined with a Bayesian
filtering technique for estimation is a promising way to make inference with
limited bias.
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FIGURE 2. Histograms (a. and b.) and scatterplot (c.) of the posterior densities of
parameters ψ and γ with P = 500 particles and dt = 1/4 from real Common-Cold
data.
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Abstract: Classical survival models cannot be used to study the transition to
second birth. Indeed, they usually assume that any one-child mother under study
will, later or sooner, become pregnant for a second time. However, one might ex-
pect that an unknown proportion of one-child mother will never have a second
child. Cure survival models extend classical survival models by enabling to dis-
tinguish the women and/or family characteristics influencing the probability of
having an extra child from those influencing the timing of an extra pregnancy.
The promotion time cure model, first presented to handle survival data in cancer
studies, argues that the observed time-to-event time is defined as the minimum
required time to detect one of the underlying latent factors. These latent factors
are assumed to be directly active at the beginning of the study. Since the prob-
ability of having a second child is a one-to-one function of the mean number of
latent factors, only time-constant covariates can be used to model this probability.
However, some women/family characteristics, such as the education attainments
of the mother and of her partner for example, may vary over time. Therefore, in
this work, we propose an extension of the promotion time cure model enabling to
deal with categorical time-dependent covariates. Data from the German Socio-
Economic Panel (GSOEP) are used to illustrate this new methodology.

Keywords: Cure fraction; Bayesian P-splines ; Categorical time-dependent co-
variates ; Power Variance Function ; Fertitily studies.

1 Introduction

Classical survival models cannot be used to study the transition to sec-
ond birth. Indeed, they usually assume that any one-child mother under
study will, later or sooner, become pregnant for the second time. However,

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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one might expect that an unknown proportion of one-child mother will
never have a second child. Cure survival models extend classical survival
models by enabling to distinguish the women and/or family characteristics
influencing the probability of having an extra child from those influencing
its timing. In this work, we shall focus on the promotion time cure model
(Chen et al., 1999). This model argues that the observed time-to-event time
is defined as the minimum time for one of N ∼ P(θ) (Poisson distributed)
latent factors to become detectable. These latent factors (Y1, . . . , YN ) are
assumed to be directly active at the beginning of the study, independent
and identically distributed (with a proper CDF F (t) independent of N).
The population survival and density functions can be shown to be

Sp(t|θ) = exp (−θF (t)) ; fp(t|θ) = θf(t)Sp(t|θ). (1)

As expected, since an unknown proportion of one-child mothers will never
become pregnant for a second time, Sp(.|θ) is an improper survival func-
tion, i.e. Sp(+∞|θ) = exp(−θ) = P [N = 0] ≥ 0. Note that this quantity
coincides with the probability of never having a second child.
Independent baseline covariates, denoted by x (including an intercept) and
z (without intercept), enter the model through a log-link on parameter θ
and through a Cox model for F (t), respectively:

θ(x) = exp(αTx), (2)

F (t|z) = 1− S0(t)exp(βT z). (3)

As suggested by Bremhorst and Lambert (2016) in that context, the base-
line survival function S0(t) is modelled through the log-baseline hazard
specified as a linear combination of a large number of cubic P-splines with
estimation performed in a Bayesian framework (Eilers and Marx, 1996 and
Jullion and Lambert, 2007).
This work is motivated by the analysis of data from the German Socio-
Economic Panel (Wagner et al., 2007) studying the transition to second
birth. In the data, some women/family characteristics, such as the educa-
tion attainments of the mother and of her partner for example, may vary
over time. However, since the latent factors are assumed to turn active only
at the beginning of the follow-up, time-varying covariates cannot be used
to model the probability of having a second child since it is a one-to-one
function of the mean number of latent factors. Chi and Ibrahim (2006)
proposed an extension to such covariates by allowing the latent factors to
occur at any time during the follow-up. However, the assumptions of their
extension lead to an increasing population hazard function which is not
realistic in fertility studies.

2 Extension of the promotion time model

For simplicity, the principles underlying the extended promotion time model
are explained on an example, pictured in Figure 1, dealing with a sin-
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Contrib. 1 Contrib. 2 Contrib. 3

0 2.5 7.5 10

t0 t1 t2 t3

x
9.5

Birth of
a child

 0 τ1 = 2.5N1 ~P(ω θ1)

L1 = Sp( 2.5 | ω θ1)
0 τ2 = 5N2 ~P(ω θ2)

L2 = Sp ( 5 | ω θ2)
0 τ3 = 2N3 ~P(ω θ3)

L3 = fp ( 2 | ω θ3)

FIGURE 1. Example of contribution to the likelihood for a women with two
variations of a single categorical covariate

gle woman and her educational attainment only influencing the pregnancy
probability (and not its timing). Assume that a woman gave birth to her
first child at 16 when she was still a student at the secondary school. Thus,
when entering the study, her level of education (giving the last obtained
diploma) is set to at most primary education (x = 0). As motivated by
the promotion time model, it is assumed that she is directly exposed to
N1 ∼ P(ω θ(x = 0)) latent factors, where ω is a random effect to control
the unobservable heterogeneity (with density function g(ω)). In the realm
of fertility studies, each latent factor could be seen as a potential decisive
argument to decide to have an extra child and the time ”to detection” as
the time required for it to be convincing. After τ1 years (2.5, say), she grad-
uated from the secondary school without getting a new child. The contri-
bution of this first period to the conditional likelihood is Sp(τ1|ω, θ(x = 0))
and the value of her level of education is updated to Vocational degree
(x = 1). The proposed extension of the promotion time model assumes
that when the characteristics of the women change, the N1 preceding la-
tent factors are replaced by N2 new ones where N2 ∼ P(ω θ(x = 1)). Five
years (τ2 = t2 − t1 = 5) after secondary school, she gets a university de-
gree, again without getting pregnant. The contribution of the completed
period to the conditional likelihood is Sp(τ2|ω, θ(x = 1)). As assumed by
our proposed extension of the promotion time model, the latent factors
corresponding to this second period are replaced by N3 new ones with
N3 ∼ P(ωθ(x = 2)). Two years later (τ3 = 2), she gave birth to her second
child. The contribution to the conditional likelihood of this final event is
fp(τ3|ω, θ(x = 2)). Thus, the contribution to the marginal likelihood of this
women is given by
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Lbirth =

∫ +∞

0

Sp(τ1|ω, θ(x = 0))Sp(τ2|ω, θ(x = 1))fp(τ3|ω, θ(x = 2))g(ω)dω.

Assume, now, that another women gets a university degree τ1 years after
entering the study (i.e. after the birth of her first child). Moreover, assume
that τ2 years later, she left the study without getting a second child. Then,
her contribution to the marginal likelihood is given by

Lright cens. =

∫ +∞

0

Sp(τ1|ω, θ(x = 1))Sp(τ2|ω, θ(x = 2))g(ω)dω.

The power variance function (PVF) distribution is used for the random
effect ω. This flexible distribution family contains the gamma, the inverse
gaussian and the positive stable distributions as limiting cases. More infor-
mations on the PVF distribution can be found in Duchateau and Janssen
(2008, Section 4.5.1).

3 Application

Bremhorst et al. (2016) studied the transition to second and third births
when the time-dependent covariates (the level of education, for example)
were frozen at the onset of the process (i.e. directly after the birth of the
first or the second child, respectively). In this section, results accounting
for possible evolution of the mother and father educational levels are re-
ported, for second birth, in Table 1. Note that, for identification purpose,
the calendar period was again frozen at the onset of the study. One finds
that the probability of having a second child significantly increases with
the education level of the mother. Regarding the timing, high educated
susceptible women tend to have their second child significantly later than
less educated ones. The education level of the partner seems to have no
significant influence on the probability or on the timing of second birth.
Not surprisingly, a single woman has a rather small probability to have a
second child compared to a spouse one. Furthermore, the age at first birth
has a significant negative (resp. positive) impact on the probability (resp.
the timing) of a second birth. Figure 2 pictures the population baseline haz-
ard function (left) and the baseline hazard function of susceptible women
(right) with its 95% pointwise credible interval. Since the population is a
mixture of susceptible and non-susceptible women, it was expected that
the instantaneous risk of having a second child is smaller for the whole
population than for susceptible women. The shapes of the two functions
slightly differ. The baseline hazard function for susceptible women peaks
3.5 years after the update of mother and father education levels, then tends
to slighlty decrease afterwards. On the other hand, the population hazard
function shows a peak sooner (3 years after after the update of the parent
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education levels) and decreases thereafter. A more detailed explanation of
the differences between the population and the susceptible hazard is avail-
able in Bremhorst et al. (2016) and will be discussed during the talk.

TABLE 1. Second birth. Estimate of the posterior median and of the posterior
standard deviation for each regression parameter.
Signif. codes : * = 0.1 ; ** = 0.05 ; *** = 0.01

Quantum Timing
Est sdpost Est sdpost

Intercept 0.436 0.194 - -

Education (ref. Middle)
Low -0.474 0.192 ** 0.303 0.212
High 1.044 0.317 *** -0.924 0.334 ***

Partner’s education (ref. Middle)
Low -0.095 0.245 -0.033 0.273
High 0.210 0.187 0.259 0.206

No partner -1.107 0.201 *** 0.168 0.231

Calendar Period 0.013 0.010 -0.010 0.012
(ref : 1998)

Age at first birth -0.132 0.026 *** 0.051 0.026 **
(Ref : 28.35 yrs )

Acknowledgments: The authors acknowledge financial support from IAP
research network P7/06 of the Belgian Government (Belgian Science Pol-
icy), and from the contract Projet d’Actions de Recherche Concertées
(ARC) 11/16-039 of the Communauté française de Belgique, granted by the
Acadmie universitaire Louvain. The authors also thank Michaela Kreyen-
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FIGURE 2. Second birth - Fitted baseline population hazard (left) and fitted
baseline hazard for suceptible women (right) with 95% pointwise credible inter-
vals.
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Abstract: We present a two-dimensional generalization of a penalized composite
link model for modelling latent distributions of birth weights with digit prefer-
ence. We allow weights at multiples of 10 to attract from neighbouring categories,
however, different multiples of 10 may attract counts differently. Moreover, we
are able to measure improvement in registration of birth weights by modulating
the strength of this misreporting pattern over time. Data are taken from Em-
merson & Roberts (2013) and they pose major challenges due to their size and
sparseness. We achieve a feasible solution by aggregating data when details are
secondary, i.e. in the estimation of the smooth latent distribution of birth weights.
Smoothness is enforced by a difference penalty on neighbouring coefficients, and
both misreporting pattern and its development over time are estimated by itera-
tively weighted least-squares systems. We provide uncertainty measures for each
elements of the model structure by bootstrap.

Keywords: birth weight; composite link model; digit preference; penalized like-
lihood.

1 Introduction

In neonatal intensive care units the birth weight of a newborn is an im-
portant determinant of drug prescriptions. Especially for very small babies
accuracy is important. Unfortunately, digit preference (DP), the rounding
of weights to multiples of 10 is very common. Emmerson & Roberts (2013)
collected 9170 birth weights over a period of 19 years and they presented
an analysis. Figure 1 presents proportions of births by last two digits of

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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their registered birth weights in two different periods. It shows an evident
attraction to weights ending with 0 and 5 as well as changes in the pattern
over time.
It is thus of interest to quantify developments over time of DP, i.e. to
determine how far improved hospital policies have reduced it. Camarda
et al. (2009) presented a model for trends in DP, based on the penalized
composite link model. The data of Emmerson & Roberts looked like the
perfect real-life test bed for our ideas, and luckily we got access to them.
The exercise turned out to be more challenging than expected, since we
had to deal with a distribution in steps of one gram over a region from 500
to 4500 grams. Here we describe how we came to a workable solution.

end−digit

pr
op

or
tio

ns

0.00

0.02

0.04
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0.10

0.12

00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

1994−2003
2004−2012

FIGURE 1. Proportion of births by last two-digits of their registered birth weights
in two different periods. Darker colors depict end-digits at multiples of 5.

2 The model

The observed data, which we denote by yij , are the counts of birth weights
(index i), ranging from 500 to 4499, in the years 1994 to 2012 (index j).
Hence the total number of counts is 4000 × 19 = m × n (91% of which
are zero). The vector y = (y1,1, . . . , y4000,1; . . . ; y1,19, . . . , y4000,19)T holds
these counts, year after year. The total number of births in each year is
given by the vector ě = (ěj), that is ěj =

∑
i yij . Likewise we arrange these

exposures as vector e = vec(E), where E = ě 11,m.
The observed counts arise from a true, but latent distribution (assumed to
be smooth), modified by a digit preference mechanism that leads to heaping
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of counts at preferred end-digits. The observed counts y follow a Poisson
distribution P(θ), where the means θ = e · µ incorporate the exposure
numbers. The true (latent) distributions are denoted by γ = vec(γij),
the digit preference is expressed by a misreporting pattern embodied in a
matrix C so that the vector µ = Cγ. This is a composite link model (CLM,
Thompson & Baker, 1981), and the goal is to estimate the misreporting
pattern in C and to see whether it became less strong over time.
Following the results reported in Emmerson & Roberts we focus on a model
producing heapings at multiples of 10. The following assumptions were
made: Counts at, for example, yy20 arise from misreporting of a proportion
of counts at yy16 to yy19 as well as yy21 to yy24. The proportion depends
on the distance to the target. These proportions are denoted by p20

1 (for
yy19 and yy21) to p20

4 (for yy16 and yy24). In the current version of the
model we include that different multiples of 10 have different pdw (d for
weight decade, ranging from 00 to 90; w = 1, . . . , 4), however, we do not
discriminate between, say, 3420 and 3520.
The composition matrix is constructed from C0, which incorporates this
misreporting pattern. C0 is a block-diagonal matrix over i,

C0 = diag
(
. . . ,C00,C10, . . . ,Cd, . . .C90,C00,C10, . . .

)
,

where the superscript denotes the weight decade attracting counts from the
neighbouring four categories on both sides. A generic Cd is given by

Cd =



· · · · · · · · · ·
· −pd4 · · · · · · · ·
· · −pd3 · · · · · · ·
· · · −pd2 · · · · · ·
· · · · −pd1 · · · · ·
· pd4 pd3 pd2 pd1 · pd1 pd2 pd3 pd4
· · · · · · −pd1 · · ·
· · · · · · · −pd2 · ·
· · · · · · · · −pd3 ·
· · · · · · · · · −pd4


.

In this way, 40 different misreporting probabilities, 4 for each weight decade,
constitute the misreporting pattern.
The misreporting pattern in C0 may, however, vary over the years. This is
expressed by a vector g = (gj) so that the final the composition matrix is

C = Im·n + [diag(g)⊗C0] ,

where Im·n is an identity matrix with mn rows. Smoothness is assumed
both for the distributions in γ within one year, but also across adjacent
years.
The latent distributions in γ are estimated by supplementing the CLM
with a two-dimensional smoothness penalty (Eilers, 2007). Moreover we
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use tensor products of B-splines to reduce the size of the system of equa-
tions in the iterative re-weighted least-squares algorithm. The latent γ are
needed at a 1g resolution to estimate the misreporting probabilities, how-
ever, reliable estimates of the γij can be achieved even when the weights
are binned in intervals of length 100g. This only changes the composition
matrix to

CG = QC ,

where Q = InK ⊗ 11,100, with K denoting the number of 100g-intervals.
The elements qil of Q are equal to 1, if weight i is contained in class l, and
zero otherwise. Again µ = CG γ and a CLM results. Therewith we still can
estimate the γij at 1g resolution but are able to reduce the computation
time by a factor of 20.
Both the misreporting probabilities in C0 and the modulating vector g are
estimated by iteratively weighted least-squares (WLS) systems. Specifically
we approximate (y − γ) as

(y − γ) ≈ N(Xpp, diag(µ̆))

and
(y − γ) ≈ N(Xgg, diag(µ̆)) .

for fitting pdw and gj , respectively. Xp and Xg are the associated design
matrices and µ̆ = Cγ, i.e. expected values at a 1g resolution.
We enforce smoothness of g with a second-order difference penalty. Alter-
natively each gj can be estimated independently by solving a system of
equations for each j.
The amount of smoothness of the latent surface γ as well as of the modulat-
ing vector g is determined by minimizing the Akaike Information Criterion.
Standard errors for the model components are obtained by bootstrap. We
resample from the data 500 times with replacement, then estimate γ̂ij , p̂

d
w

and ĝj . Confidence intervals for the misreporting pattern and modulating
vector were derived directly from the estimated values. Pointwise confidence
intervals for the γij were computed by drawing random Poisson counts from
the fitted latent distributions.

3 Results for the birth weight data

When we fit the model to the data of Emmerson & Roberts we obtain
the results presented in Figure 2. We analyzed the full data set as well as
the subset of low-weight babies below 2500g. Multiples of 100g (end-digits
00) clearly attract more observations than the other weight decades. Mis-
reporting probabilities are higher for categories next to the target decades.
They are lowest for the weight decades 10 and 90, while for weights ending
with 20 and 80 the pdw are noticeably higher. The misreporting pattern for
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infants with low birth weight is not much different from the pattern for the
complete data set.
The strength of this pattern changed over time, and there has been a sub-
stantial improvement in the accuracy of birth weight measurements over
the period 1994-2012. The improvement was particularly strong for the last
years and stronger for the infants with low birth weights.
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FIGURE 2. Top left: Estimated surface of the true birth weight distributions over
time (full data set). Top right: Strength of DP pattern over time, full data and
low birth weights (<2500g). The curves represent the estimated scaling vector ĝ
with 95% confidence intervals. Bottom: Estimated misreporting probabilities pdw
for weight decades d = 10, . . . , 00 with 95% confidence intervals.
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4 Outlook

The estimated misreporting pattern in Figure 2 calls for extension of the
model to allow a even more flexible setting.
For instance, the increase of the pdw at distance w = 4 presumably is due
to the fact that we did not incorporate the end-digits 05 in our model. We
attempted to generalize our model toward this aspect. We allow the same
category to exchange to either the closest digit ending with 0 or ending with
5, e.g. latent counts in 2343 could have been misreported to either 2340 or
2345. Whereas this model worked well on simulated data, first results on
birth weights were not satisfactory. Likely the actual data do not contain
sufficiently large information to inform the model over this double option
and therefore final outcomes favored always digits ending with 0. A possible
solution would be to allow end-digits 0 and 5 into the model, but without
any overlapping structure in the C matrix.
A more challenging, though flexible approach could be to modulate a single
preference pattern for 00, 10, ..., 90 across weight (i.e. multiples of 100)
and time. If attainable, this approach would allow to study misreporting
patterns over time and subsets of the data without splitting of the weight
axis into groups.
We plan to consider both ideas in a future extension.
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Abstract: A forecasting approach, based on Forward Likelihood for Prediction
which aims to forecast the daily intensity of space-time point process, is applied
to the seismic sequence of L’Aquila earthquake. Estimates of total intensity are
represented through the interface between R and Google Earth, and also results
of the forecast experiments are shown.
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1 Introduction

Earthquakes are identified by points in space and time through their space-
time coordinates. For this reason point processes are mostly used to repre-
sent and describe earthquakes.
A point process is a random collection of points, each one representing the
time and space coordinates of a single event. Analytically, the conditional
intensity function λ(t, x, y|Ht) uniquely characterizes any space-time point
process (Daley and Vere-Jones, 2003). It is defined as the frequency with
which events are expected to occur around a particular location in time
and space, conditional on the prior history Ht = {(ti, xi, yi,Mi) : ti < t}
of the point process up to time t, where (xi, yi) are the spatial coordinates
and Mi is the magnitude of the i-th event.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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The Epidemic Type Aftershock Sequences (etas) model is a point process,
introduced for the first time by Ogata in 1988 and extended in 1998. The
model represents the intensity of earthquakes of magnitude M ≥M0, where
M0 is the magnitude threshold, in a well defined spatio-time region. The
model includes background activity with occurrence rate µ(x, y) that is
constant in time. The background activity is described by a homogeneous
Poisson process. The model also includes aftershock activity represented by
a non-stationary Poisson process according to a branching-type structure.
Given a seismic catalog {(ti, xi, yi,Mi); i = 1, . . . , n}, the space-time con-
ditional intensity function of an ETAS model is written as follows:

λ(t, x, y|Ht) = µf(x, y)+
∑
tj<t

κ0e
(α−γ)(mj−m0)

(t− tj + c)p

{
(x− xj)2 + (y − yj)2

eγ(mj−m0)
+ d

}−q
(1)

The total intensity λ(t, x, y|Ht) is obtained as sum of two parts: the back-
ground intensity µf(x, y) and the triggered intensity, the sum on the right
side. In equation (1) κ0 measures the strength of the aftershock activity, c
and p are characteristic parameters of the seismic activity of a given region,
α and γ measure the efficiency of an event of given magnitude in generating
aftershocks, mj is the magnitude of the j-th event while m0 is the threshold
magnitude and d and q control for the spatial influence of the mainshock.
The Forward Likelihood for Prediction (flp) is a semi-parametric estima-
tion technique proposed by Chiodi and Adelfio (2011 and 2015) that allows
to obtain simultaneous estimates of the background and triggered intensity
components of a branching-type point process, such as the etas model. It
estimates backround intensity through a weighted gaussian kernel estima-
tor and the triggered intensity through maximum likelihood.
In this paper we aim to estimate the Italian seismic activity and then
to represent the estimates interfacing R and Google Earth. Moreover we
intend to forecast the daily total and triggered intensity of the seismic
sequence of L’Aquila earthquake, in the context of the Collaboratory for
the Study of Earthquakes Predictability experiment (Zechar et al, 2010).

1.1 Data

We study the seismic activity of Italy. The data have been collected in
ISIDe (Italian Seismic Instrumental and parametric Data-base), provided
by the INGV (Istituto Nazionale di Geofisica e Vulcanologia). It gathers
the earthquake’s parameters integrating data provided in quasi real-time
from localization performed by the Italian earthquake surveillance service.
The spatio-temporal window is from April 16th, 2005 to November 1st,
2013, in the observed rectangular space area with degrees 35 0’0.00’’N

(latitude) 6 16’19.20’’E (longitude) and 47 58’12.00’’N (latitude)
18 57’39.60’’E (longitude), which covers the Italian territory.
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Table 1 presents the data structure:

TABLE 1. Data structure

Time Latitude Longitude Depth Magnitude

2013/11/01− 23 : 41 : 05.180 40.600 15.159 3.6 2.2
2013/11/01− 23 : 40 : 56.300 42.878 12.906 10.1 1.3
2013/11/01− 22 : 59 : 26.960 38.651 15.435 214.5 2.1
2013/11/01− 22 : 51 : 57.530 43.351 12.524 8.1 1.2
2013/11/01− 21 : 10 : 41.200 43.403 12.571 5.4 0.6

2 Method

2.1 Forecasting the intensity - Forward Likelihood for
Prediction

We aim to obtain daily estimates for the probability to observe at least one
event of magnitude greater than the threshold magnitude m0 in each of the
cells of the testing area. We then present the estimates through a dynamic
representation (see next section).
We employ an etas model, with conditional intensity function as in equa-
tion (1). Background seismicity µf(x, y) is estimated through flp, while
parametric components are estimated through maximum likelihood. The
two estimation steps are alternated until convergence (Adelfio and Chiodi,
2015).
Estimates were obtained using the R-package etasFLP (Chiodi and Adelfio,
2015), (R Core Team, 2015). As an example of the performance of the
proposed technique, we report a short forecast experiment conducted for
the temporal period of the catastrophic seismic sequence that hit the region
surrounding the city of L’Aquila in April 2009. We first estimate the total,
background and triggered intensity using all observations, with magnitude
greater than 2.5, from April 16th, 2005 to March 6th, 2009. Then we forecast
the daily intensity forward for 60 days.
Staring from the estimated model, we forecast the intensity of the following
day. Then we re-estimate the model based on the predicted intensity and
we repeat these steps for a period of 60 days.
Results of the experiment are presented in Figure 1. It compares the number
of events observed with the number of events predicted by the model, for
the whole region of test.
As shown in Figure 1, the blue and light blue lines are closer to the black
line, which implies that the forecast obtained combining the only time
model and the amplifier effect of magnitude, is the closest one to the real
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FIGURE 1. Results of forecasting experiment: 6 March 2009 - 5 May 2009
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situation. However it is evident lack of fit in the forecasting when consider-
ing also the spatial dimension. We suggest to improve the model in terms
of spatial adjustment.

2.2 Interactive scientific visualization of spatio-temporal data

When analyzing complex spatio-temporal phenomena, such as earthquakes,
it is important to have an appropriate scientific visualization approach. In
this paper we use the R-package plotKML. It provides methods to represent
the most common spatial classes of R and is easily executable with Google
Earth. Therewith spatio-temporal data can be visually explored easily.
The advantages of this interface with Google Earth are to visually extend
the key concept to audiences not trained in using GIS. Additionally it allows
researches to qualitatively interpret the results of spatial analysis and to
easily detect the performance of complex spatial models by exploring data
in multiple domains.
In this section we provide estimation results of the etas model to compare
the observed seismic intensity through etasFLP in two time periods, 30
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FIGURE 2. Output ETAS model on Google Earth: Total Intensity - March 2009

FIGURE 3. Output ETAS model on Google Earth: Total Intensity - May 2009

days before the mainshock of L’Aquila seismic sequence, and 30 days later.
We visualize how the Italian seismicity changed due to L’Aquila earth-
quakes. As an example of interactive visualization (although this tool is
more appreciated if used interactively) here we show the result of the etas
model estimated with all observations from April 16th, 2005 to March 6th,
2009 (Figure 2).
Figure 3 represents, instead, the result of the etas model estimated with
all observations from April 16th, 2005 to May 6th, 2009 .
By comparing the two figures, it is clear how the seismic sequence of
L’Aquila had a strong effect on the Italian seismicity. In March 2009 the
total observed intensity was concentrated in the region of the southern
Tyrrhenian Sea. After the events of L’Aquila sequence a concentration
around the territory of L’Aquila is visible.
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3 Future developments and discussion

In this work we first performed a short forecast experiment concerning
the sequence of L’Aquila earthquake. Then we proposed a dynamic visu-
alization of space-time data given by the interface of R and Google Earth
to represent the results of the forecast experiments obtained by the etas-
FLP package. Future developments are needed to improve the results of
the forecast experiments in terms of spatial adjustment by considering a
more flexible version of the etas model and its variants accounting for the
geophysics structures observed in space (Siino et al., 2016).
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Abstract: Event-related potentials (ERPs) are recordings of electrical activity
along the scalp time-locked to perceptual, motor and cognitive events. Because
significant association between ERPs and behavioral variables of interest are often
rare and weak, detection of ERP signals poses major challenges to statistical
analysis. In this ’rare-and-weak’ paradigm, the Higher Criticism method was
shown in a number of recent papers to be optimal to determine signal detection
threshold.
However, ERP time dependence exhibits a block pattern suggesting strong lo-
cal and long-range autocorrelation components which violates the mild depen-
dence assumption under which signal detection can be achieved efficiently. In
high throughput settings, a variety of decorrelation approaches have been devel-
oped to counter those detrimental effects of dependence. The presentation first
highlights the impact of dependence in terms of instability of signal detection by
Higher Criticism Thresholding. A second objective is to revisit the decorrelation
issue using a flexible factor modeling for the covariance. The present method,
and variants introducing penalized estimation of the inverse covariance of the
process of test statistics, are compared to recent other decorrelation approaches
either based on a shrinkage estimation of the inverse covariance or on its Cholesky
decomposition.

Keywords: Correlated noise; Event-Related Potentials; High dimension; Higher
Criticism; Signal detection.

1 Scientific Background

Event-related potentials (ERPs) are recordings of electrical activity along
the scalp time-locked to perceptual, motor and cognitive events. Such high-
throughput instrumental data provide high temporal resolution to chart
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the time course of mental processes. With the routine collection of massive
amounts of data from ERP studies, researchers must face the challenge
of signal detection, which shall guarantee a low false positive error rate
while maintaining sufficient power. How to achieve this objective for ERP
data exhibiting arbitrarily strong temporal dependence is the focus of the
present paper.
In the ’Rare and Weak’ (RW) paradigm introduced by Donoho and Jin
(2004), signal detection is based on a m−vector T of test statistics T =
(Tt1 , . . . , Ttm)′ where m is the number of time frames, for the collection
of corresponding null hypotheses H0,ti of no association between the ERP
measured at time ti and the response variable. The RW setup is defined in
Donoho and Jin (2004) as the following sparse normal mixture model for
T : for all t,

Tt ∼ (1− ε)N (0, 1) + εN (δ, 1),

where the mixing parameter 0 ≤ ε ≤ 1 is the proportion of non-null fea-
tures and δ ≥ 0 is the signal amplitude. Note that the normality assumption
introduced above holds for most ERP studies in which the tests for the as-
sociation between the ERPs and the response variable is handled by t-tests
for the significance of a single parameter. The alternative parameterization
βε = − log(ε)/ log(m), rδ = (δ2/2)/log(m) is often preferred because it
maps both the sparsity parameter βε and the amplitude parameter rδ into
[0; 1], if we observe that the expectation of the maximum test statistics un-
der the null is bounded by

√
2 logm. Sparsity of the signal is characterized

by 1/2 ≤ βε ≤ 1 and weakness by rδ < 1. Many ERP studies fall into this
situation of a rare and weak signal.
In the former RW paradigm, Donoho and Jin (2004) demonstrates that a
detection method called Higher Criticism Thresholding, which is based on
a distance between the empirical probability distribution function of the
p-values and the uniform null distribution, achieves the theoretically opti-
mal decision limits. As reported in Causeur et al. (2012), the pronounced
auto-correlation observed in ERP data can however induce a long-range
regularity for the test statistics, resulting in spuriously low p-values outside
of the support of the signal, which in turn can affect the control of type-I
error rate of signal detection procedures. Equivalently, Hall and Jin (2010)
reports that the theoretical detection bounds derived in the RW framework
are markedly modified by a strong dependence among the test statistics.
Therefore, Hall and Jin (2010) proposes to extend the RW framework as
follows:

T = δ + T0,

where T0 ∼ N (0; Σ). If U is the inverse of the Cholesky factorization of Σ,
namely UΣU ′ = I, Hall and Jin (2010) introduces the so-called innovated
HCT (iHCT) as the HCT procedure applied on the uncorrelated vector of
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innovations UT = Uδ+UT0 and shows that iHCT restores the effectiveness
of the HCT procedure in situations of strong dependence.
As in Perthame et al. (2015) and Sheu et al. (2016), we propose an al-
ternative approach of innovated HCT based on a flexible factor model for
Σ. The complex dependence pattern observed in the correlation structure
of test statistics derived from ERP data can indeed be well approximated
using the factor decomposition of Σ, often with a moderate number of fac-
tors. Moreover, it provides simple and efficient algebraic tools to derive the
decorrelation matrix operator Σ−1/2. A Cyclic-Coordinate Descent (CCD)
algorithm is also presented for a sparse penalized estimation of Σ−1/2.

2 Materials and Methods

In ERP studies, perhaps the most commonly used experimental task is the
oddball paradigm. In this paradigm, typically two classes of stimuli are pre-
sented, one occurring frequently and the other occurring infrequently. The
subject is required to distinguish between the two stimuli and to respond
to the rare stimuli. In an auditory ERP study performed at Kaohshung
Medical University in Taiwan, the task uses two pure tones of 500 Hz and
1,000 Hz. The former is presented 120 out of 150 trials, whereas the latter is
presented only for 30 trials. At given electrode locations on the scalp, ERP
waveforms were obtained from each of the two tone conditions. Many stud-
ies have demonstrated that an ERP waveform across the parieto-central
area of the skull is usually observed around 300 ms (the so-called P300
component) and is larger after the target event. The question to be ad-
dressed is whether it is possible to detect a significant difference between
the mean ERP curves observed for the two stimuli. This verification is of
fundamental importance if the P300 component is to be considered as an
electrophysiological marker for further assessment of psychiatric and neu-
rological disorders.

The t-test process of no difference between the two conditions along time
shows a strong regularity which is not consistent with the expected profile
of a process of independently distributed Student variables. This suggests
a strong time-dependence among tests, which is known to affect the joint
null distribution of test statistics. We propose the following RW framework
for the m−vector of test statistics:

T = δ + T0,

where T0 ∼ N (0; Σ = Ψ + BB′), where Ψ is a m × m diagonal matrix
of specific variances whose diagonal elements ψ2

t are in [0; 1] and B is a
m × q matrix of factor loadings, with, for all t, ||bt = (bt,1, . . . , bt,q)

′||2 =∑q
l=1 b

2
tl = 1−ψ2

t . Note that the above parameterization provides a closed-
form expression for the decorrelation matrix Σ−1/2, which can be estimated
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either using the EM algorithm presented in Sheu et al. (2016) or an alter-
native penalized ML estimation of Σ−1 which leads to a sparse estimate.

3 Results and partial conclusion

Some variants of HCT procedures are compared hereafter, including the
method proposed by Hall and Jin (2010) based on the Cholesky decom-
position of Σ (iHCT for innovated HCT), the correlation-adjusted t-tests
introduced by Ahdesmäki and Strimmer (2010), based on a James-Stein
Shrinkage estimator and the Factor-innovated HCT (F-iHCT) method pre-
sented above, taking advantage of a factor structure for Σ. The comparison
is both based on the application of the HCT and iHCT procedures to the
auditory oddball ERP dataset introduced above and on intensive simu-
lations under various dependence patterns. We particularly focus on two
criteria: the prediction performance based on the selected features and the
number of selected features. Only partial simulation results are reported
here, demonstrating that an innovated HCT procedure based on a factor
decomposition of Σ−1 shows desirable properties in a simulation scenario
which mimics the auditory oddball ERP data introduced above.
1,000 datasets with dimensions 30×800 are generated according to a multi-
variate normal distribution. Both the correlation structure and the within-
condition variances are estimated from the auditory oddball ERP data in-
troduced in section 2. Each dataset is split into two balanced groups. The
normal distribution has expectation zero for the first 15 subjects (group 1)
and the expectation for the 15 last subjects (group 2) is a waveform with
various amplitudes and non-null features in [150ms, 200ms]. 1, 000 training
datasets are generated for each signal strength. Eight corresponding testing
data of size 1000×800 with two balanced groups are also generated accord-
ing to the same simulation plan for a prediction purpose. The RW model
parameters for this simulation plan are εT = 12% and AT =

√
2rlog(T )

with r taking 8 equally distributed values in [0.004; 0.688]. According to
the RW setup, the present combination of r and β characterizes a not very
sparse signal, with a weak to large strength.
As in Donoho and Jin (2008), the variable selection step by different ver-
sions of HCT is followed by a supervised classification on the subset of
selected variables. Four methods are compared in this simulation study:

• Standard HCT : variable selection by standard HCT on raw p-values,
classification by Naives Bayes (see Bickel and Levina, 2004);

• CAT-scores: variable selection by HCT on decorrelated test statistics
using a shrinkage estimator of the whitening matrix (see Ahdesmäki
and Strimmer, 2010), classification by diagonal Shrinkage Discrimi-
nant Analysis (SDA, see Ahdesmäki and Strimmer, 2010);
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• F-iHCT : variable selection by Factor-innovated HCT, classification
by conditional Bayes classifier (proposed by Perthame et al., 2015);

• AFA: variable selection by standard HCT performed on p-values ad-
justed for effects of latent factors as returned by the AFA (see Sheu
et al., 2016) procedure, classification by conditional Bayes classifier
(see Perthame et al., 2015).

For all the methods described above, the proportion of signal recovery,
called precision, the false discovery rate (FDR), the number of selected
features and the prediction error rate are computed. For all datasets, vari-
able selection and estimation of classification rule are performed on training
data (including the optimization of meta-parameters) and prediction error
is computed on testing data.
Figure 1 shows that selection by CAT-scores appears to be the most efficient
to catch weak signals, with both the smallest FDR and the largest preci-
sion for small amplitudes of signal. Even if CAT-scores does not achieve
the best performance for large signal strengths, the FDR, precision and
number of selected variables are remarkably stable. Standard HCT seems
robust to dependence as the method performs well in term of FDR but
its precision is small regarding methods based on decorrelation. Moreover,
the number of selected variables is also small, which suggests that HCT is
conservative under dependence. Lastly, classification by Naive Bayes fails
as the error rates are the largest for weak to moderate strengths of signal.
Variable selection and classification procedures based on the factor model
assumption (AFA and F-iHCT) provide the best results both in terms of
false positive, recovery of the signal and prediction error. FDR turns out
to be small for moderate to high signal strengths and a correct power of
signal identification is achieved.
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Ahdesmäki, M and Strimmer, K. (2010) Feature selection in omics predic-
tion problems using cat scores and false non-discovery rate control.
Annals of Applied Statistics, vol. 4, pp. 503 – 519.

Bickel, P.J. and Levina, E. (2004) Some theory for Fisher’s Linear Dis-
criminant function, naive Bayes, and some alternatives when there
are many more variables than observations. Bernoulli, vol. 10, 6, pp.
989-1010.

Causeur, D., Chu, M.C., Hsieh, S. and Sheu, C.F. (2012) A factor-adjusted
multiple testing procedure for ERP data analysis. Behavior Research
Methods, vol. 44, pp. 635 – 643.

Donoho, D. and Jin. J. (2008) Higher criticism thresholding: Optimal fea-
ture selection when useful features are rare and weak. Proceedings of
the National Academy of Sciences, vol. 105, 39, pp. 14790-14795.



70 Signal detection in ERP data

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

Signal strength

Fa
ls

e 
D

is
co

ve
ry

 R
at

e

standard HCT
CAT−scores
F−iHCT
AFA

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

Signal strength

P
re

ci
si

on

standard HCT
CAT−scores
F−iHCT
AFA

1 2 3 4 5 6 7 8

0
20

40
60

80

Signal strength

N
um

be
r 

of
 s

el
ec

te
d 

fe
at

ur
es

standard HCT
CAT−scores
F−iHCT
AFA

1 2 3 4 5 6 7 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Signal strength

P
re

di
ct

io
n 

er
ro

r

standard HCT
CAT−scores
F−iHCT
AFA

FIGURE 1. Results of the simulation study depending on signal strength: False
Discovery Rate (top left), Precision (top right), Number of selected features (bot-
tom left), Prediction error (bottom right).
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Abstract: We propose a new lasso-type estimator of regression coefficients for
regression models. Our proposal relies on the recent idea of induced smoothing
and leads to estimators with sampling distribution somewhat close to the Nor-
mal one, regardless of their true value, along with the corresponding reliable
covariance matrix. As a consequence inference (e.g. p-values) may be carried out
relatively easily. We present results from some simulation experiments.
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1 Introduction

Regression models are widely used and well-established statistical tool in
many fields. They allow to estimate the covariate effect by returning point
estimates and (reliable) standard errors to compute confidence intervals
and p-values. However high dimensional regression models pose some is-
sues connected to the complexity of the model and/or to the presence
of uninformative variables. The Least Absolutes Shrinkage and Selection
Operator (LASSO) represents a very elegant and relatively widespread so-
lution to carry out variable selection and parameter estimation simultane-
ously. While point estimation can be performed quite straightforwardly, a
possible current limitation is computation of standard errors. Tibshirani
(1996) proposed to use as approximation

∑
|βj | ≈

∑
β2
j /|βj |, but this ap-

proach returns zero standard error when the corresponding point estimate
equals zero. Also, the bootstrap is far from being helpful as it is incon-
sistent (Kyung et al., 2010). Osborne et al. (2010) derived a formula for

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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covariance matrix which ensures positive standard errors for all coefficient
estimates. Beside of computation of standard errors, an additional issue
comes from the sampling distribution of the regression coefficients which
is not Normal when at least one coefficient is equal to zero. Typically, the
sampling distribution with null parameter has positive probability mass at
zero (Knight and Fu, 2000: Pötscher and Leeb, 2009; Kyung et al., 2010).
In the Robert Tibshirani discussion paper at annual conference of RSS 2010,
Peter Bühlmann discusses: The issue of assigning uncertainty and variabil-
ity in high dimensional statistical inference deserves further research. For
example, questions about power are largely unanswered.
This paper focuses on setting up of a lasso estimator which allows reliable
computation of covariance matrix and standard errors. Our proposal re-
lies on the recent idea of Induced Smoothed (IS) wherein the unsmooth
estimating functions are replaced by the naturally smoothed counterparts.
Section 2 describes the idea of IS and Section 3 reports some simulation
evidence.

2 Methods

The idea of natural smoothing was introduced by Brown and Wang (2005)
to deal with unsmooth estimating equations U(β), say. Assuming a multi-

normal distribution for β̂, i.e. V −1/2(β̂ − β) ∼ z, the smoothed estimating
function is obtained via

Ũ(β) = Ez[U(β + V 1/2z)], (1)

where Ez[ · ] represents expectation over z ∼ N(0, Ip), standard multi-

normal random perturbations. Ũ is smooth, thus the slope matrix Ũ ′ =
∂
∂β Ũ(β) exists and the usual sandwich formula applies to compute the co-

variance matrix of estimator β̂,

V = Ũ ′−1 I Ũ ′−1 (2)

where I = cov(U) is the usual information matrix.

Clearly Ũ requires V (see (1)), and in turn V needs Ũ (see (2)). Hence an

iterative procedure is called for, alternating computation of Ũ and V . More
specifically:

1. fix initial guesses for V and β; in particular, we set V (0) = IJ/n

2. compute Ũ(β(0)) according to (1)

3. compute Ṽ (β(0)) according to (2)

4. update β̂ via a Newton-Raphson step β(0) − Ũ ′−1Ũ
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5. set β(0) = β̂ and repeat steps 2-4 till convergence

We propose to apply the natural smoothing to the lasso estimating equa-
tions. Figure 1 portrays the effect of the induced smoothing on the lasso
penalty

∑2
j=1 |βj | for two different standard error estimates.

β1

β 2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

β1

β 2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

β1

β 2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

FIGURE 1. Contrasting the lasso penalty (diamond, black thin lines) with the
induced smoothed counterpart (thick gray lines). The amount of smoothing at
kink depends on the variance of the corresponding estimator and it is determined
automatically by data.

3 Simulation Evidence

We compare Lasso and IS-Lasso estimators in a (limited) simulation study.
Standard errors for the Lasso are computed according to Osborne et al.
(2010), while standard errors for IS-Lasso come from the sandwich formula
described in method section. We generate 1000 replications from a linear
regression model with sample size n = 50 and number of parameters p = 20
(only 4/20 informative covariates); the tuning parameter λ is fixed at 4
throughout replicates.
Table 1 shows summary of sampling distributions for the first 8 coefficients.
In terms of bias and variance of estimators, results are quite similar between
Lasso and IS-Lasso: both naive and IS lasso estimators are biased if the
corresponding coefficient is nonzero, however SE from IS-Lasso always ap-
pear to be more reliable, especially when the true parameter is zero: on the
other hand, the Osborne approach heavily overestimates uncertainty in the
estimate.
We assess performance of the IS-LASSO approach in hypothesis testing
problems. We assume a standard Normal null distribution for the Wald
statistic based on IS-Lasso estimator β̂j/SE(β̂j); note, under H0, β̂j is un-
biased, the SE correctly estimates the estimator variability, and therefore
good performance is expected. We compare the IS-Lasso Wald statistic
with two recent proposals: i) covTest (Lockhart et al., 2014) which does
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TABLE 1. Mean and standard deviation of the sampling distributions in
the simulation study, obtained with LASSO and IS-LASSO. SE is the av-
erage of the standard errors. λ = 4 at each replicate and true values
β = (0.7, 0.5, 1, 0.8, 0, 0, . . . , 0)T , only the first 8 reported.

mean sd SE

Lasso IS Lasso IS Lasso IS

β1 0.617 0.613 0.146 0.148 0.168 0.148
β2 0.443 0.444 0.153 0.152 0.165 0.145
β3 0.927 0.921 0.183 0.186 0.199 0.178
β4 0.761 0.758 0.138 0.141 0.146 0.134
β5 -0.001 -0.004 0.080 0.095 0.178 0.087
β6 -0.003 -0.005 0.089 0.100 0.151 0.089
β7 -0.019 -0.026 0.089 0.101 0.161 0.091
β8 -0.021 -0.026 0.094 0.106 0.177 0.090

not depend on the lambda value since it is based on the difference between
the fitted values of the models with and without the relevant covariate en-
tering into active set at proper lambda value; ii) selective or post-selection
inference (Lee et al., 2013), namely a conditional (to the selected model)
approach using the truncated Normal distribution for the parameter esti-
mators with a fixed lambda value. We generate 1000 replications from a
linear regression model with sample size n = 50 and number of parameters
p = 20 (3 true nonzero coefficients); at each replicate the tuning parameter
λ is optimized through 5 fold Cross Validation. Table 2 shows the results
of the first 10 coefficients only. When the true coefficient is different from
zero, the Wald statistic based on IS-Lasso estimator leads to a (remarkably)
more powerful test with respect to covTest and the conditional approaches;
moreover under the null hypothesis (i.e. when the true coefficient is zero),
the size is quite close to the nominal 0.05 level.

4 Application

We use the IS-Lasso to the well-known Prostate Cancer dataset analyzed
in Tibshirani (1996). There are n = 97 subjects, p = 8 covariates (see
Table 3) and the response variable is the log of prostrate specific antigen.
Table 3 reports the estimates from naive Lasso and IS-Lasso along with
p-values returned by covTest for the naive Lasso estimates and the Wald
statistic for IS-Lasso estimates. It is noteworthy that svi variable results to
be statistically significant for IS-Lasso but not for covTest.



Cilluffo et al. 75

5 Conclusions

We have presented a smooth approximation for the Lasso regression. It is
based on the recent idea of induced smoothing (IS) and leads to estima-
tors having a sampling distribution closer to the Normal one; moreover the
method allows to gain reliable standard errors which correctly quantify the
estimator variance, even for estimator of zero coefficient. We have compared
the IS-Lasso in hypothesis testing assuming a standard Normal distribu-
tion for the traditional Wald statistic. Interestingly, results get better than
competitors in terms of power. There are several sides to be further inves-
tigated, for instance the IS-Lasso does not return exactly zero estimates,
although the resulting p-value can be used to discard or not the covariates.
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Abstract:
In responding to a rating question, an individual may give an answer according
to his/her knowledge (feeling) or to his/her level of indecision (uncertainty) and
such behavior can be modelled through a latent variable. In this paper, two latent
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a mixture of four components corresponding to the cases of uncertainty in both
the answers, feeling in both the answers and uncertainty in only one of them.
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1 Introduction

According to the CUB models (D’Elia and Piccolo, 2005), both individual
feeling (personal perception of an item) and uncertainty (intrinsic indeci-
sion) determine the choice among ordered alternatives of a rating question.
In this context, the distribution of the answer to a single item is a mixture
of feeling and uncertainty components, where the first is modelled by a
(shifted) Binomial distribution, the latter by a discrete Uniform distribu-
tion. Tutz et al. (2014), as an alternative, use a general ordinal response
model (Tutz, 2012, Agresti, 2010) as feeling component. Their proposal is
extended in our approach to the multivariate case to model the association
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among the respondent’s ratings on several items taking into account the
dependence of the answers on subject’s features. In this paper, we illustrate
the idea in the bivariate case and use real data to prove the usefulness of
our model.

2 A mixture model for bivariate ordinal responses

Let R1 and R2 be two ordinal variables, with support {1, 2, . . . ,m1} and
{1, 2, . . . ,m2}, respectively. We assume the existence of two latent variables,
Cl, l = 1, 2, such that the respondent answers the l − th question accord-
ing to his/her feeling when Cl = 1 or his/her uncertainty when Cl = 0.
Moreover, the ordinal variable Rl is assumed to depend only on the latent
variable Cl, l = 1, 2. Consequently, we suppose that:

1) R1⊥⊥C2|C1;

2) R2⊥⊥C1|C2;

3) given Cl = 0, Rl has a Uniform distribution, l = 1, 2.

Under these assumptions, the marginal distribution of Rl, l = 1, 2, is:

P (Rl = rl) = πl P (Rl = rl | Cl = 1) + (1− πl) vl(rl), rl = 1, 2, . . . ,ml,
(1)

where πl = P (Cl = 1) and vl(rl) is the discrete Uniform distribution over
{1, 2, . . . ,ml}, as considered by Tutz et al. (2014) and D’Elia and Piccolo
(2005) in the univariate case. Moreover, to specify the joint distribution
of the two responses, it is reasonable to assume that R1 and R2 are in-
dependent whenever C1 · C2 = 0. This is equivalently expressed by the
conditions:

4) R1⊥⊥R2|C1 = 0, C2 = 0;

5) R1⊥⊥R2|C1 = 0, C2 = 1;

6) R1⊥⊥R2|C1 = 1, C2 = 0.

If πij = P (C1 = i, C2 = j), i = 0, 1, j = 0, 1, are the joint probabilities of
the latent variables, conditions 1 − 6 imply that the joint distribution of
(R1, R2) is a mixture of four conditional distributions:

p(R1 = r1, R2 = r2) = π00v1(r1)v2(r2)
+ π01v1(r1)P (R2 = r2 | C2 = 1)
+ π10P (R1 = r1 | C1 = 1)v2(r2)
+ π11p(R1 = r1, R2 = r2 | C1 = 1, C2 = 1).

(2)
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3 A parametrization for the distribution of (R1, R2)

Two marginal logits and a log odds ratio are used for specifying πij , i = 0, 1,
j = 0, 1 in order to derive a simple parametric expression for πl = P (Cl =
1), involved in the marginal probabilities of Rl given in (1).
The vectors β1, β2, including (m1 − 1) and (m2 − 1) logits (local, global,
continuation, reverse continuation), are used to parameterize P (Rl = rl |
Cl = 1), l = 1, 2. In addition, β1, β2, together with the (m1−1)(m2−1) log
odds ratios (local, global, continuation, reverse continuation) of the vector
β12, parameterize the joint distribution P (R1 = r1, R2 = r2 | C1 = 1, C2 =
1).
This parameterization includes m1m2 − 1 + 3 parameters, so that identi-
fiability constraints are necessary. For instance, the presence of covariates
may serve this need. Given a set of covariates X , the vectors of logits βX1 ,
βX2 , and of log odds ratios βX12 are defined for every configuration x of the
covariates in X . Heterogeneity can be modelled through:

βX1 = X1α1, βX2 = X2α2, βX12 = X12α12

The entries of the matrices X1, X2 and X12 are functions of the covariates
of X . Constraints on the parameters of the above linear models can solve
the identifiability issue. For instance, given a covariate X with J categories,
we denote the marginal logits and log odds ratios by βX=j

1 (i1), βX=j
2 (i2)

and βX=j
12 (i1, i2), i1 = 1, ...,m1 − 1, i2 = 1, ...,m2 − 1, j = 1, 2, ..., J . Hence,

we consider the following proportional logit models:

βX=j
1 (i1) = α1(i1) + δ1j , j = 1, 2, ..., J,

βX=j
2 (i2) = α2(i2) + δ2j , j = 1, 2, ..., J,

δ11 = δ21 = 0,

together with the hypothesis of homogeneous association (Kateri, 2014)

βX=j
12 (i1, i2) = α12(i1, i2), i1 = 1, ...,m1−1, i2 = 1, ...,m2−1, j = 1, 2, ..., J.

For this model, the number of parameters (m1m2 − 1) + 2(J − 1) + 3 is
less than the number J(m1m2 − 1) of independent observable frequencies,
so that the necessary condition for identifiability is always satisfied.

4 An example

As an example, we apply the proposed models to data from the 6th round
of the European Social Survey, collected in 2012. Data are available at
http://ess.nsd.uib.no/ess/round6/. The sample size is 3189.
Among the variables recorded by the survey, we want to study Happiness
and life Satisfaction, here measured on a 5 points scale.
Happiness and life Satisfaction are ambiguous concepts (Feldman, 2008),
thus it seems intriguing to evaluate in which extent people are able to
provide an accurate evaluation of these two variables.
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TABLE 1. The fitted models are specified under different hypotheses of: covari-
ates effect on the observed responses (column 1) and on latent variables (column
2), and the independence/no independence of the two latent variables (column
2). The number of parameters (n.par.) and the BIC value are reported in the last
2 columns.

Effect of
covariates on Hypothesis on
observed var. latent var. n.par. BIC

C, G on H, S indipendence 30 13489.98
C on H, S indipendence 28 13475.64
G on H, S indipendence 28 13512.10

C, G on H, S no indipendence 31 13496.09
C on H, S no indipendence 29 13481.71
G on H, S no indipendence 29 13520.27

C on H, S no indipendence, G 31 13497.27
C on H, S no indipendence, C 31 13489.60
C on H, S indipendence, G 30 13490.71
C on H, S indipendence, C 30 13480.13

In particular, taking into account the uncertainty component in the an-
swers, we investigate whether there is a relationship between Happiness
and life Satisfaction and if the Gender (G) and the Country (UK, Italy)
of residence (C) have any influence on these aspects of the life and/or on
the uncertainty in expressing an opinion on them.
Some models, aimed at giving a first response to these questions, are re-
ported in Table 1.
The model specified by the hypotheses of row 2 in Table 1 shows the best
fit (lowest BIC value) to the analyzed data.
Thus, the results seem to be coherent with the hypotheses that people tend
to give an answer at random to the questions about Happiness and Satisfac-
tion independently, but this uncertain behavior does not vary remarkably
between men or women, or for the English and Italian people (hypotheses
in rows 7-10). While the Country where the respondents live is a relevant
factor in discriminating their level of Happiness and Satisfaction for the
life, showing the British unexpectedly happier and more satisfied than the
Italians.
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Abstract: In the repairable systems literature one can find a great number of
papers that propose maintenance policies under the assumption of minimal repair
after each failure (such repair leaves the system in the same condition as it was
just before the failure - as bad as old). This paper derives a statistical procedure
to estimate the optimal Preventive Maintenance (PM) periodic policy, under the
following extended two assumptions: (1) perfect repair at each PM action (i.e.,
the system returns to the as good as new state) and (2) imperfect system repair
after each failure (the system returns to an intermediate state between as bad as
old and as good as new). This work was motivated by a real situation involving
off-road engines maintenance.

Keywords: imperfect repair; minimal repair; ARA models; power law process.

1 Introduction

Off-road trucks are designed to operate in harsh conditions and, conse-
quently, they are used in every conceivable industry where rough terrain
goes with the territory (mining, drilling, etc.). In mining companies partic-
ularly, off-road trucks are used to transport high production between the
front mining and the cell homogenization and, for that matter, the good
performance of this equipment is essential to the financial health of this
kind of business. As a matter of fact, since the treatment plant needs to
work with a constant supply of ore, it is crucial to bring back an off-road
truck to its operational state as soon as a failure occurs. These failures cost
millions of dollars to the global mining industry directly (replacement and

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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corrective repair actions) and indirectly through the inconveniences caused
by those failures, such as loss of production, security risks, and realloca-
tion of maintenance resources. Due to the high cost of these systems, one
great concern is the implementation of good maintenance policies in order
to prolong their life and reduce any expenses generated by the occurrence
of unexpected failures.
The approach proposed in this paper takes into account the effect of repair
actions implemented after each failure (repair efficiency) in order to deter-
mine the optimal periodicity of PMs. The PM actions are supposed here
to be perfect.
Models for imperfect repair have already been presented in the literature.
However inference procedures for the quantities of interest have not yet
been fully studied. In the present paper, statistical methods, including the
likelihood function, Monte Carlo simulation, and bootstrap resample meth-
ods, are used in order to: (1) estimate the degree of efficiency of repair and
(2) obtain the optimal preventive maintenance check points that minimize
the expected total cost.

2 Imperfect repair and maintenance cost

From a modelling point of view, {N(t)}t≥0 (where N(t) denotes the number
of observed failures up to time t) is a stochastic point process, with mean
function Φ(t) = E[N(t)] and failure intensity function

λ(t) = lim
δt→0

P (N(t+ δt)−N(t) = 1|=−t )

δt
, ∀t ≥ 0 (1)

where =−t represents the history up to time t (informally, one could think
of =−t as the information provided by the failure times 0 < t1 < · · · <
tN(t) < t).
Assume that PM is performed every τ units of time. The expected mainte-
nance cost per unit time for the system is given by (Gilardoni and Colosimo,
2007)

C(τ) =
CPM + CIRE[N(τ)]

τ
, τ > 0, (2)

where CPM and CIR are fixed costs of PM and imperfect repair, respec-
tively. The objective here is to find τ which minimizes C(τ). Since E[N(t)] =
Φ(t), deriving Equation (2) in respect to τ and equating to zero we obtain

D(τ) = τφ(τ)− Φ(τ) =
CPM
CIR

, (3)

where φ(τ) = d
dτΦ(τ) is the ROCOF function for the system.
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3 Statistical inference

A likelihood function appropriate to model this process considers the ob-
served k systems failure times tij ; i = 1, . . . , k; j = 1, . . . , ni, and is given
by

L(µ) =

k1∏
i=1

[f(ti,1, . . . , ti,ni |N(t∗i ) = ni)P (N(t∗i ) = ni)].

ARA1 (Kijima, 1989) model, λ(t) = λR(t − (1 − θ)TN(t)), where Tn is a

random variable representing the real age of the system at the nth failure
and θ, the repair efficiency parameter. Power Law Process (PLP - Crow,

1974) is used as the initial intensity function λR(t) = β
η

(
t
η

)β−1

, η, β, t >

0.
The steps of the proposed method are illustrated using the PLP but it can
be applied to any other parametric form chosen for the initial intensity.
The steps are described below:

• Step 1: Maximum Likelihood estimation of the model parameters: β̂,
η̂ (PLP parameters) and θ̂ (repair efficiency).

• Step 2: Estimation of the mean function: Monte Carlo simulation of
failure histories and calculation of the MCF.

• Step 3: Estimation of the optimal periodicity τ . In order to solve
Equation (3), it is necessary to find estimates for the functions φ(t)
and MCF. In Step 2, the MCF was used as an estimate for Φ(t).
However, the MCF is a step function, so its derivative is almost ev-
erywhere zero, and an estimate for φ(t) cannot be directly obtained
from this. So, we use here the nonparametric estimate given by the
right derivative of the Greatest Convex Minorant (GCM) (Boswell,
1966):

4 Off-Road Engines Maintenance Data Revisited

In this section, we return to the situation described in Section 1, i.e, the
off-road engines maintenance. Table 1 exhibits the point and interval (95%
confidence intervals based on Normal approximation) MLEs for parameters.

Under both models, β̂ is consistently greater than 1, indicating that the
engines tend to fail more frequently with age. Also, it is noteworthy that
the estimated value for θ, and the corresponding confidence interval suggest
that the repair actions taken after failures are neither minimal (θ = 1) nor
perfect (θ = 0). According to the intensity function for ARA1, the inclusion

of θ is what differentiates the IR from the MR modelling. So, θ̂ 6= 1 means
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that TN(t) has to be taken into consideration in the intensity function after
each failure. In other words, this is a strong evidence that the repair effects
must be considered in the problem, supporting the use of ARA1 instead of
the MR model.

TABLE 1. Point and bootstrap interval (95% confidence level) estimates for PLP
(β, η) and effect of repair (θ) parameters, and values of the maximum of the
log-likelihood function (l̂), AIC e BIC under minimal and imperfect repair models
for off-road data.

Model: Minimal Repair Imperfect Repair (ARA1)

β̂ 2.125(1.916; 2.357) 2.458(2.185; 2.765)
η̂ 16, 715(15, 604; 17, 905) 15, 582(14, 601; 16, 628)

θ̂ - 0.471(0.330; 0.672)

l̂ −2126.74 −2118.59
AIC 4257.48 4243.18
BIC 4264.15 4253.19
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Abstract: In regression settings the effect of a covariate, accounting for all the
others, on the dependent variable is typically tested by using a z-statistic. Under
regularity conditions on the model and assuming the null hypothesis holds, the
associated Wald pivot is asymptotically normally distributed. However, its finite-
sample distribution can be far from Gaussian when the sample size is small
or moderate relative to the dimension of the global parameter. In this work,
asymptotic bias correction of the Wald z-statistic is proposed as a means to
improve the accuracy of first-order inference for the regression coefficients.
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1 Wald pivots in regression settings

Consider a standard regression framework with p covariates and p corre-
sponding scalar unknown coefficients β = (β1, . . . , βp)

T, all assumed to be
identifiable. For the sake of generality, suppose the model involves also a
vector λ = (λ1, . . . , λq)

T of nuisance parameters (e.g. dispersion/precision).
Furthermore, denote by θ = (βT, λT)T the full parameter vector and by i(θ)
the expected information matrix, with inverse having the following blocking
structure:

{i(θ)}−1 =

[
iββ(θ) iβλ(θ)
iλβ(θ) iλλ(θ)

]
.

The most widespread way to investigate the impact of a particular regressor
on the response variable, taking into consideration all the other covariates,
is via z-tests, mainly because of their simplicity and the facility of their
implementation. Formally, the procedure to test the hypothesis H0 : βj =
β0j (j = 1, . . . , p) while accounting for the remaining model parameters,
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national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
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consists of comparing the quantiles of the standard normal distribution to
the value of the Wald z-statistic

T j(θ̂;β0j) =
β̂j − β0j√
νj(θ̂)

, (1)

where θ̂ = (β̂T, λ̂T)T is the full maximum likelihood (ML) estimate and
νj(θ) indicates the (j, j)th element of the matrix iββ(θ). Indeed, under
mild regularity conditions on the model and if the null hypothesis holds,
usual likelihood-based asymptotic arguments (see, for instance, Pace and
Salvan, 1997, Chapter 4) can be employed to show that the large-sample
distribution of (1) is standard normal. Such limiting result may however
lead to statistical tests of poor performance when the sample size is mod-
erate and/or small with respect to p.

2 Location-adjusted z-statistics

In order to make the normal approximation more reliable in these situa-
tions, one can attempt to reduce the asymptotic bias of T j(θ̂;β0j) by similar
arguments as in Efron (1975, Remark 11) for correcting the bias of the ML
estimator. The key step is to consider T j(θ;β0j) as a non-singular trans-
formation of the parameter vector θ. Then, the ML estimator of T j(θ;β0j)

is simply T j(θ̂;β0j).
Let zj(θ;β0j) = T j(θ;β0j)/

√
n, so that it has the same asymptotic order

as θ. Assuming the function zj(·;β0j) is at least three times differentiable
and starting from Remark 3 of Section 4.3 in Kosmidis and Firth (2010), it
may be shown that, given the consistency of the ML estimator and adopting
the Einstein summation convention, zj(θ̂;β0j) admits the asymptotic bias
expansion

Eθ
[
zj(θ̂;β0j)−zj(θ;β0j)

]
=Bz(θ;β0j)+O(n−2)

=zjr(θ;β0j)B
r(θ)+

1

2
zjrs(θ;β0j)κ

r,s(θ)+O(n−2),

where Br(θ) is such that Eθ
[
θ̂r − θr

]
= Br(θ) +O(n−2), zjr(θ;β0j) and

zjrs(θ;β0j) are the gradient and the hessian, respectively, of zj(·;β0j) evalu-
ated at θ and κr,s(θ) is the (r, s)th element of {i(θ)}−1(r, s = 1, . . . , p+ q).

It is then possible to estimate the first-order bias of zj(θ̂;β0j) by Bz(θ̂;β0j)
and derive the location-adjusted Wald z-statistic

T j,∗(θ̂;β0j) = T j(θ̂;β0j)−
√
nBz(θ̂;β0j). (2)

In the following, we will refer to the test based on T j,∗(θ̂;β0j) as the bias-
corrected z-test.
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3 Illustrations on the performance of the
location-adjusted z-statistic

3.1 Inference about the logarithm of an exponential mean

Consider independent random variables Y1, . . . , Yn, each having an ex-
ponential distribution with mean E(Yi) = eβ (i = 1, . . . , n). Under this

assumption, we have that T (β̂;β0) = −
√
n(log ȳ + β0) and T ∗(β̂;β0) =

T (β̂;β0) − 1/(2
√
n). The performance of the location-adjusted z-statistic

in such framework is remarkable: when testing β = β0 against different al-
ternatives (two- or one-sided) at a level α, the test based on T ∗(β̂;β0) has

size which is closer to the nominal level than the one based on T (β̂;β0) for
any value of β0, n and α. This can be easily checked by comparing the null
distributions of both statistics with the standard normal. Figure 1 shows
such a comparison for n = 5: it is clear that the distribution of T ∗(β̂;β0)
is closer to that of a N(0, 1).
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FIGURE 1. Comparison of the null cumulative distribution functions
F (x) = Pβ0(T

(
β̂;β0) ≤ x

)
and F ∗(x) = Pβ0(T ∗

(
β̂;β0) ≤ x

)
, ∀β0 ∈ R, to the

standard normal distribution Φ(x), in the case n = 5.

3.2 Gamma regression

A simulation study can be set up as follows: starting from n = 8, for every
ith unit, covariates xi and zi (i = 1, . . . , n) are generated as independent
realizations of a N(1, 1). The corresponding dependent variable yi in each of
the 2000 simulated datasets is then obtained by random generation from a
Gamma distribution with shape parameter ν = 2 and rate λi = ν/µi, where
µi = exp(β̃1 + β̃2xi + β̃3zi) with β̃1 = 1, β̃2 = 1, β̃3 = 2. On every sample,
statistics (1) and (2) are used to test H0 : βj = β̃j (j = 1, . . . , 4) versus
the two-tailed alternative, taking into account the other regressors, so that
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empirical sizes of the corresponding tests can be estimated at nominal levels
α = 0.01, 0.05. This procedure is repeated for n = 16, 32, 64, 128, 256, but
instead of generating a new set of regressors every time, the same xi and
zi (i = 1, . . . , 8) are used for adjacent blocks of 8 units.
Partial results of the study are available in Table 1, which also displays
estimated sizes for tests based on the score statistic s, profile likelihood
ratio statistic r and its modification r∗ (Brazzale et al., 2007, Chapter 8).
As can be seen, for small values of n (especially n = 8, 16) the bias-corrected
z-test has empirical sizes much closer to α than its standard version, and
does also better than the test associated with the likelihood ratio statistic.
Among the first-order tests, s appears to have the best general performance,
even comparable to the second-order accurate r∗. Not surprisingly, such
discrepancies tend to disappear as n increases.

TABLE 1. Empirical sizes at nominal levels α = 0.01, 0.05 of the tests related to
T j , its adjusted version T j,∗, the score statistic sj , the likelihood ratio statistic rj

and its modification rj,∗ (j = 1, 2, 3) in the Gamma regression model, estimated
by a study based on 2000 simulated datasets of size n = 8, 16, 32, 64.

α = 0.01 α = 0.05

n = 8 T j T j,∗ sj rj rj,∗ T j T j,∗ sj rj rj,∗

j = 1 0.109 0.040 0.015 0.051 0.014 0.178 0.096 0.074 0.135 0.060
j = 2 0.113 0.048 0.004 0.062 0.015 0.199 0.105 0.068 0.147 0.072
j = 3 0.107 0.046 0.005 0.057 0.016 0.200 0.099 0.066 0.144 0.064

n = 16 T j T j,∗ sj rj rj,∗ T j T j,∗ sj rj rj,∗

j = 1 0.043 0.026 0.015 0.027 0.015 0.107 0.068 0.062 0.087 0.057
j = 2 0.046 0.020 0.008 0.023 0.009 0.112 0.071 0.057 0.083 0.057
j = 3 0.039 0.020 0.006 0.024 0.011 0.116 0.068 0.051 0.081 0.051

n = 32 T j T j,∗ sj rj rj,∗ T j T j,∗ sj rj rj,∗

j = 1 0.023 0.013 0.010 0.014 0.010 0.072 0.058 0.051 0.061 0.054
j = 2 0.022 0.014 0.008 0.013 0.011 0.076 0.059 0.048 0.061 0.049
j = 3 0.024 0.017 0.011 0.018 0.013 0.074 0.056 0.043 0.061 0.045

n = 64 T j T j,∗ sj rj rj,∗ T j T j,∗ sj rj rj,∗

j = 1 0.020 0.016 0.013 0.014 0.018 0.071 0.063 0.058 0.062 0.065
j = 2 0.014 0.013 0.009 0.011 0.012 0.061 0.052 0.049 0.056 0.050
j = 3 0.014 0.011 0.008 0.010 0.009 0.063 0.056 0.050 0.058 0.053

A more realistic scenario is considered in the next simulation experiment,
involving the clotting dataset in McCullagh and Nelder (1989, p. 300).
The data record observations of n = 18 mean clotting times in seconds
of blood (y) for nine percentage concentrations of normal plasma (x) and
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two lots of clotting agent (z = 1, 2). Assuming Y1, . . . , Yn are independent
Gamma random variables with mean µi = exp(β1 +β2xi +β3zi +β4xi∗ zi)
(i = 1, . . . , n), a Gamma regression model with log link is fitted to the
data and 2000 samples of size n are simulated under the ML fit. To test
H0 : βj = β̂j , where β̂j is the estimate of βj obtained from the original
ML fit (j = 1, . . . , 4), the standard z-statistic and its location-adjusted
version, the score statistic, the likelihood ratio one and its modification are
computed on every dataset.
Table 2 reports empirical sizes of the associated two-tailed tests at nominal
levels α = 0.01, 0.05. For each regression coefficient, the bias-corrected z-
test results in sizes closer to α than (1). Moreover, the normal Q-Q plots in
Figure 2 illustrate how the adjustment in location improves the standard
normal approximation to the null distribution of the z-statistic in case of
testing H0 : β4 = β̂4. From Table 2 we can also see that (2) does not
perform as well as r∗, but performs always better than the likelihood ratio
statistic and better than s when the nominal level is 0.05.

TABLE 2. Empirical sizes at nominal levels α = 0.01, 0.05 of the tests related
to T j , T j,∗, sj , rj and rj,∗ (j = 1, . . . , 4) in the Gamma regression model. The
figures are based on a simulation study with 2000 replications.

α = 0.01 α = 0.05

T j T j,∗ sj rj rj,∗ T j T j,∗ sj rj rj,∗

j = 1 0.036 0.016 0.006 0.023 0.006 0.106 0.059 0.070 0.089 0.051
j = 2 0.039 0.015 0.010 0.023 0.008 0.108 0.060 0.071 0.088 0.052
j = 3 0.035 0.015 0.010 0.024 0.008 0.092 0.056 0.064 0.076 0.046
j = 4 0.034 0.014 0.010 0.019 0.008 0.105 0.054 0.067 0.082 0.045
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FIGURE 2. Normal Q-Q plots based on 2000 values of T 4(θ̂; β̂4) and T 4,∗(θ̂; β̂4)
computed under the null hypothesis H0 : β4 = β̂4.
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4 Remarks and future work

Results obtained in the Gamma regression setting suggest that location
adjustment of the z-statistic can appreciably improve testing at no extra
computational cost, especially for small sample sizes. In addition, some
initial experiments not shown here give evidence that adopting a paramet-
ric bootstrap to correct the scale of (2) can lead to a performance even
comparable to second-order tests. Obviously, this improvement has to be
evaluated taking also into account the increase in computational effort.
Applications to other generalized linear models need undoubtedly to be ex-
plored, since the availability of explicit formulae for the first-order asymp-
totic bias of the ML estimator in such framework (Cordeiro and McCullagh,
1991) makes the adjustment in location of the Wald z-statistic appealing
in terms of required calculations. A specific model we plan to consider is
the Cox proportional hazards model (see, for example, Ma, 2008, Chapter
4, for a different method to correct the bias of Cox estimates).

References

Brazzale, A.R., Davison, A.C., and Reid, N. (2007). Applied Asymptotics
Case Studies in Small-Sample Statistics. Cambridge University Press.

Cordeiro, G.M. and McCullagh, P. (1991). Bias correction in generalized
linear models. Journal of the Royal Statistical Society B, 3, 629 – 643.

Efron, B. (1975). The Annals of Statistics, 3, 1189 – 1217.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer-Verlag.

Kosmidis, I. and Firth, D. (2010). A generic algorithm for reducing bias
in parametric estimation. Electronic Journal of Statistics, 4, 1097 –
1112.

Ma, L. (2008). Improved Methods for the Analysis of Time-to-Event Data.
PhD dissertation, Temple University. Ann Arbor: ProQuest/UMI.

McCullagh, P. and Nelder, J.A (1989). Generalized Linear Models. Lon-
don: Chapman and Hall.

Pace, L. and Salvan, A. (1997). Principles of Statistical Inference: From a
Neo-Fisherian Perspective. London: World Scientific.



Fast stable relative risk regression using an
overparameterised EM algorithm

Mark W. Donoghoe1,2, Ian C. Marschner1,2

1 Macquarie University, Sydney, Australia
2 NHMRC Clinical Trials Centre, University of Sydney, Australia

E-mail for correspondence: mark.donoghoe@mq.edu.au

Abstract: Relative risk regression models can be fitted using a log-link binomial
GLM, however standard algorithms can suffer convergence problems. Combinato-
rial EM (CEM) algorithms that provide stable convergence can be computation-
ally intensive, particularly for large models. We present a new approach using an
EM algorithm with an overparameterised model that retains the stability of the
CEM algorithm but greatly reduces computing time. This is demonstrated with
a small example in which modified Fisher scoring fails to converge to the MLE,
and a bootstrap analysis of data from a clinical trial in heart attack patients.
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1 Introduction

In biostatistics, regression models for relative risks can be fitted using a
binomial generalised linear model (GLM) with a log link function. These are
often preferred to a standard logistic regression analysis, but the standard
method used to fit such models in many statistical packages — Fisher
scoring — can fail to converge to the maximum likelihood estimate (MLE).
Modifications such as step-halving can help avoid such issues in some cases,
but cannot guarantee convergence in general.
Stable methods based on the EM algorithm have been presented for fitting
such models, but they can be computationally expensive when the number
of covariates is large. We present a novel method that can greatly reduce
computational time, without compromising the stability of the algorithm.
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2 Combinatorial EM algorithm

Consider a log-link binomial GLM with A categorical covariates (each with
ka levels) and B linear covariates; that is Yi ∼ Bin(Ni, exp{Λ(ui,vi;θ)}),
where

Λ(ui,vi;θ) = α0 +

A∑
a=1

ka∑
k=2

αa(k)1(uia = k) +

B∑
b=1

βbvib,

and we have imposed the identifiability constraint αa(1) = 0. The total
number of parameters that need to be estimated in this model is 1+

∑
a(ka−

1) +B.
The exponentiated parameters in this model represent adjusted relative
risks. Specifically, exp(αa(k)) is the relative risk associated with a change
in the ath categorical covariate from level 1 to level k, keeping all other
covariates fixed. Likewise exp(βb) is the relative risk associated with a one-
unit increase in the bth continuous covariate, with all else staying constant.
As described by Marschner and Gillett (2012), the model can be viewed as
a missing data problem, in which the complete data are independent latent
Bernoulli random variables underlying the observed binomial outcomes.
That is,

Yi =

Ni∑
j=1

Yij where Yij = Aij0 ×
A∏
a=1

Aija ×
B∏
b=1

vib∏
k=1

Bijbk (1)

with

Aij0 ∼ Bernoulli(exp(α0))

Aija ∼ Bernoulli(exp(αa(uia)))

Bijbk ∼ Bernoulli(exp(βb)),

and we have assumed that all vib are non-negative integers. This can be
done without loss of generality because continuous covariates must be mea-
sured to a finite number of decimal places and can therefore be rescaled
appropriately.
Stable maximum likelihood estimation can be performed by implementing
an EM algorithm based on this complete-data model. However, since each
of the Bernoulli probabilities must not exceed 1, the complete-data model
imposes non-positivity constraints on each of the parameters, and hence
the observed-data log-likelihood will be maximised over a subspace of the
parameter space.
To overcome this, a combinatorial EM (CEM) algorithm can be used, in
which the constrained maximisation is sequentially performed on each of
a collection of subspaces that together cover the entire parameter space
(Marschner, 2014). The constrained estimate with the highest likelihood is
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the global MLE for the log-binomial model. However, this requires up to∏A
a=1 ka×2B applications of the EM algorithm, and can be computationally

expensive for large models.

3 Overparameterised EM algorithm

To overcome the computational complexity of the CEM algorithm, we con-
sider an overparameterised model. We remove the identifiability constraint,
allowing all of the categorical parameters to be non-zero, and express each
of the continuous covariates as the difference of two dummy covariates:
βb = β−b −β

+
b . This is a similar idea to an algorithm suggested for the lasso

problem (Tibshirani, 1996, p. 279), and somewhat resembles, but is not
equivalent to, the parameter expanded EM (PX-EM) algorithm presented
by Liu et al. (1998).
The overparameterised model is Yi ∼ Bin(Ni, exp{Λ∗(ui,vi;θ∗)}), where

Λ∗(ui,vi;θ
∗) = α∗0 +

A∑
a=1

ka∑
k=1

α∗a(k)1(uia = k) +

B∑
b=1

(
β−b vib + β+

b v
∗
ib

)
,

with v∗ib = v
(1)
b − vib, v

(1)
b = maxi vib. This observed-data model is equiva-

lent to the original in the sense that the original parameter vector can be
recovered using θ = R(θ∗) where R is the many-to-one reduction function
defined by

α0 = α∗0 +

A∑
a=1

α∗a(1) +

B∑
b=1

β+
b v

(1)
b

αa(k) = α∗a(k)− α∗a(1)

βb = β−b − β
+
b .

such that
Λ∗(u,v;θ∗) = Λ(u,v;R(θ∗)).

A complete-data model analogous to that used for the CEM algorithm (1)
can be defined for the overparameterised model, which includes a total of
1 +

∑
a ka + 2B parameters. The resulting collection of non-positivity con-

straints on the expanded set of parameters is equivalent to a constraint
that the largest fitted probability for any covariate combination is 1, as
desired. Thus maximum likelihood estimation over the entire parameter
space can now be performed by a single application of the associated EM
algorithm. Upon convergence, the estimate of the expanded parameter vec-
tor θ̂∗ is converted to an estimate for the original parameter vector using
θ̂ = R(θ̂∗). This method retains the stability of the EM algorithm while
potentially greatly reducing the time needed to fit the model.
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FIGURE 1. Log-likelihood surface for a log-binomial GLM with the example data;
white areas are outside the parameter space, and the square marks the MLE. Dark
lines are the paths followed by (a) glm / glm2, (b) the CEM algorithm, and (c)
the overparameterised EM algorithm.

4 Example

Marschner (2015) discussed various types of convergence problems that can
occur with log-binomial GLMs, but here we will consider an example of an
additional type of convergence problem. We use a simple dataset of 100
observations with a single continuous covariate. Figure 1 shows the log-
likelihood with respect to the intercept (α) and slope (β) parameters for a
log-binomial GLM on this data. The MLE is marked with a square, and is
on the boundary of the parameter space.
The standard implementation of Fisher scoring for GLMs in R is the glm

function, and the glm2 package (Marschner, 2011) provides additional sta-

bility in some scenarios. From a starting estimate of (α̂, β̂) = (−1,−1),
the path of the modified Fisher scoring algorithm used by glm and glm2

is shown in Figure 1(a). At every iteration, the full Fisher scoring step
(thinner line) produces an estimate outside the parameter space, and step-
halving is used to find a valid estimate. Close to the boundary of the param-
eter space, the gradient of the Fisher scoring step is almost parallel to the
boundary, and the step-halving process only produces very small changes
in the estimate until convergence is declared at a suboptimal estimate.
The CEM algorithm partitions the parameter space into two subspaces,
corresponding to positive and negative values of the slope parameter. Figure
1(b) shows the path taken by the EM algorithm from (−1,−1), which
reaches the MLE after 81 iterations. However, because this estimate is not
a stationary point of the log-likelihood, we must search the other parameter
subspace. The path taken from (−1, 0.5) is also shown on the same graph,
converging to the constrained MLE after 41 iterations. The likelihood for
this estimate is lower than that in the first parameter subspace, and so we
know that the first constrained MLE is the global maximum.
Our overparameterised EM algorithm requires only one application of the
EM algorithm, letting β = β− − β+ and searching the resulting three-
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dimensional parameter space. Figure 1(c) shows the path taken by the over-

parameterised EM from (α̂, β̂−, β̂+) = (−1,−2,−1) and (−1,−0.5,−1),
projected back onto the original two dimensions, to the global MLE. This
shows two advantages of the overparameterised EM approach: the path
from (−1,−1) is a more direct route to the MLE, requiring just 72 it-
erations to converge, while the path from (−1, 0.5) does not stop at the
‘boundary’ between positive and negative values of β, converging to the
global MLE in 73 iterations. Thus our proposed algorithm has addressed
the false convergence of glm and glm2 in this scenario, while providing
faster convergence than the CEM algorithm from either starting estimate.

5 Application

ASSENT-2 (ASSENT-2 Investigators, 1999) was a randomised trial that
studied 30-day mortality in 16949 patients with acute myocardial infarction
(MI). A log-binomial model allows us to estimate the impact of age, MI
severity, treatment delay and geographical region on death, expressed as
relative risks. But the MLE is on the boundary of the parameter space,
and so we cannot use the information matrix to estimate standard errors.
The stability of our EM algorithm allows us to use bootstrap resampling
to construct confidence intervals for the parameter estimates, avoiding any
bias due to failed convergence in some samples. With three levels for each
of the covariates, the CEM algorithm must search up to 34 = 81 parame-
ter subspaces for each resampled dataset. Our overparameterised EM ap-
proach, by contrast, requires just a single application of the EM algorithm.
We used these algorithms to fit models on 1000 bootstrap resamples from
the ASSENT-2 data. Table 1 shows a summary of the stability, number of
iterations and time needed for convergence of each algorithm. The overpa-
rameterised EM approach retained the stability of the CEM algorithm, but
required far fewer iterations of the EM algorithm (6970 versus 27120, on
average). This translated to an average acceleration that was greater than
3-fold (1.9 versus 7.0 seconds), adding up to a difference of 85 minutes over
the entire analysis. General acceleration methods for the EM algorithm
could be used to improve this further still.

TABLE 1. Summary of results from fitting log-binomial GLMs to 1000 bootstrap
samples from the ASSENT-2 data, using the CEM and overparameterised EM
(OP EM) algorithms

% conv. Iterations (1000s) Time (sec)

Method to MLE Q1 Med Mean Q3 Q1 Med Mean Q3

CEM 100 6.2 7.9 27.1 13.0 1.6 2.1 7.0 3.4
OP EM 100 2.2 2.7 7.0 7.8 0.6 0.8 1.9 2.2
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6 Conclusions

We have presented a novel method for maximum likelihood estimation in
relative risk regression models that retains the stability of the EM algo-
rithm but considerably reduces computational time compared to the CEM
algorithm for large models. The application considered here is not of par-
ticularly high dimension. In other situations the required number of CEM
subspaces may be much larger, in which case the improvements would be
even more dramatic. A proof of the convergence of the overparameterised
algorithm is a subject of further research. The approach could also be ap-
plied in a similar way to improve on CEM algorithms that have been pub-
lished for rate difference (Marschner, 2010) and risk difference (Donoghoe
and Marschner, 2014) regression models.
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Functional data analysis of juggling records
with the smooth complex logarithm
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Abstract: Multi-dimensional recordings of the movements of the hand of a jug-
gler show a quasi-periodic pattern, with slowly changing frequency and ampli-
tude. The smooth complex logarithm is a suitable model, especially when ex-
tended with the second harmonic.

Keywords: Analytic signal, frequency, penalty

1 Introduction

Seeing someone juggling balls is a fascinating sight. It becomes even more
interesting if the movements of the juggler have been measured and are
available for statistical modeling. The data I will work with here have
been collected by Jim Ramsay and colleagues (Ramsay et al., 2013). They
consist of ten trials of approximately ten seconds. The movements of a
light emitting diode on the index finger of the juggler were recorded with
high precision, in three directions: left-right (x), forward-backward (y) and
up-down (z). Figure 1 shows eight seconds of trial 2.
A special section on functional data analysis in the Electronic Journal of
Statistics (Volume 8, part 2, 2014) contains nine papers on the analysis
of these juggling data. They all first split the data in cycles, based on
chosen landmarks, and then apply different alignment or warping proce-
dures within the cycles. In contrast, I model the series with extensions of
the smooth complex logarithm model (Eilers, 2010). This model was de-
veloped for the analysis of chirp-like signals, like the sounds of crickets or
bats. It fits a sine wave with variable frequency and amplitude to a time
series. The juggling data, especially the x and y components have a more
complex shape, but by adding harmonics with multiples of the fundamental
frequency we get a very good fit to the data.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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FIGURE 1. The juggling movements in three directions, from top to bottom:
up-down, left-right, forward-backward.

2 The extended smooth complex logarithm

One of the most beautiful formulas in complex analysis says that

exp(α+ iφ) = eα(cosφ+ i sinφ), (1)

where i =
√
−1. If we have functions α(t) and φ(t), then the real part

is a cosine with momentary amplitude a(t) = exp(α(t)) and momentary
frequency f(t) = dφ/dt. Conversely, if we observe a signal u(t) that looks
like a cosine with (smoothly) changing amplitude and frequency, we can
try to estimate its complex logarithm. In practice we have to work with
discrete data, so we observe, say, ui for i = 1 : n.
An attractive recipe is to augment the observed real component with its
imaginary part, v, using the Hilbert transform (see Wikipedia, under the
lemma analytic signal). Then we can compute the momentary amplitude
ãi =

√
u2
i + v2

i and the momentary phase as ψi = atan2(yi, xi). However,
ψ is the so-called reduced phase, always lying between −π and π. There
are a number of downward jumps, as illustrated in Figure 2. These jumps
are not hard to locate and if we add 2π to ψ at each jump cumulatively,
we get the continuous phase φ̃.
It is possible to smooth ã and φ̃ directly. A smooth estimate of φ is im-
portant if we want to compute its derivative, to obtain the local frequency.
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FIGURE 2. Top: the original z signal (thick black line)and its imaginary compo-
nent (thin red line), obtained with the Hilbert transform. Middle: the momentary
reduced phase. Bottom: the momentary amplitude and its trend.

A more refined approach is to use smooth non-linear regression, fitting
ai cosφ, with discrete roughness penalties on a and φ (Eilers, 2010), by
minimizing

S =
∑
i

(yi − ai cosφ)2 + λ
∑
i

(∆2ai)
2 + λ′

∑
i

(∆2φ)2.

Here ∆2 is the operator that forms second order differences. The model is
strongly non-linear in φ, but the phase obtained from the Hilbert transform
gives us excellent initial values. So linearization works well, using

ai cos(φi) ≈ ai cos(φ̆i)− ai sin(φ̆i)(φi = φ̆i),

where φ̆i is an approximation to the solution.
The top panel of Figure 3 presents the result of fitting this model. A careful
look shows systematic undershoots in both valleys and peaks. This is caused
by the deviation from a cosine waveform. To extend the model, I introduce
the second harmonic:

µi = ai(q1 cosφi + q2 sinφi + q3 cos 2φi + q4 sinφi), (2)

using a and φ as estimated with the initial model. The coefficients q1 to
q4 can be estimated by linear regression. The bottom panel of Figure 3
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shows the result of fitting this extended model It is very well possible to
give each of the sines and cosines its own smoothly changing amplitude,
but the advantage of the model in (2) is its ease of interpretation: each
cycle has the same basic shape, modulated in strength by the amplitude
and stretched or shrunk by changes in the speed of the phase.
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FIGURE 3. Data (thick gray), fitted curves (thin blue), and residuals (red), with
(bottom) and without (top) the second harmonic.

The movements in three directions are synchronized, so the next stage is
a model in which the estimated phase for the up-down signal is taken as
the basis for what could be called a bilinear or modulated factor complex
logarithm model. For j = 1 : 3 it states that

µij = E(yij) = aij(q1j cosφi + q2j sinφi + q3j cos(2φi) + q4j sin(2φi)).

There is one series for the phase and for each direction there are four
coefficients, that determine the optimal combination of sine and cosine of
the fundamental and the doubled phase. This combination is modulated by
a separate amplitude function for each direction. Given a.j , the q.j are found
by linear regression. Given these coefficients, we find a.j by minimizing∑

i

(yij − aijfij)2 + λ
∑
i

(∆2aij)
2 + λ′

∑
i

(∆2aij)
2,

where λ = 105 and

fij = q1j cosφi + q2j sinφi + q3j cos(2φi) + q4j sin(2φi).

This is a type of varying-coefficient model. Experience has shown that
alternating between updating amplitude and coefficients converges quickly
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FIGURE 4. Phase and frequency for the z signal. Top panel: continuous phase
as constructed from the Hilbert transform (black line) and the estimate form
the model; shown are the differences with a fitted linear regression line. Bottom
panel: the derivative of the estimated continuous phase, giving the momentary
frequency.

to the solution. In principle it is also possible to update φ in each iteration,
but I did not go that far.
Results are shown in Figure 5. The fit is quite good for the up-down and
left-right signal. It is a bit worse for the forward-backward signal, but there
is no clear indication of systematic deviations. What remains are small
unsystematic variations; after all the juggler is not a machine.

3 Discussion

I have presented a model for quasi-periodic juggling data that breaks away
from the popular approach that splits them in cycles, followed by warping.
A common time series for the continuous phase is obtained and a separate
amplitude series for each of the three movement directions. For each of them
four coefficients describe how the shape of one cycle is formed from sines
and cosines of the phase and its first harmonic. No landmarks are needed
and at any moment in time a smooth estimate of the local frequency is
available.
The smooth complex logarithm gives a more parsimonious model than a
set of some 30 warping functions, one for each cycle of each coordinate.
Dissection into cycles, and mapping these onto a domain from 0 to 1,
effectively removes the momentary frequency, losing important information.
Yet, if dissection into cycles would still be desired, one can use the crossings
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FIGURE 5. Fit with varying amplitude and second harmonic. The black lines
represent the observed data and the broken blue lines the fitted values. The
dotted red lines show the estimated amplitudes.

of the reduced phase with any chosen level between −π and π to mark their
start and end.
The juggling records are a good example, but it seems that the model is
useful in many more situations. With modern technology it is very easy
to record movements of humans or animals with high precision at low cost
(think of the Kinect that comes with some Microsoft Xbox game consoles).
The juggling data analyzed here are of exceptional quality, but the model
is robust enough to be applied to noisy data too.
I used my carpenter’s eye to set the amount of smoothing. More research
is needed to determine how well automatic methods like cross validation
perform for the present model.
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Abstract: Whilst many numeric methods, such as AIC and deviance, exist for
assessing model fit, diagrammatic methods are few. We present here a diagnostic
plot, to which we refer as ‘Christmas tree plot’ due its characteristic shape, that
may be used to visually assess the suitability of a given count data model.
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1 Introduction

Consider univariate count data Y1, . . . , Yn, which are supposedly distributed
according to some count distribution F (µi, θ), with mean parameters µi =
E(Yi|xi) possibly depending on covariates xi (which may be vector–valued).

We assume that a routine to obtain estimates µ̂i = Ê(Yi|xi) and θ̂ is read-
ily available, and we are interested in assessing graphically the quality of
the resulting model fit. The idea is to check whether, for each count k,
the number N(k) of observed counts k is consistent with the suspected
count distribution F . More precisely, denote pi(k) = P (k|µi, θ) the prob-
ability of observing the count k under covariate xi and model F , which
can be estimated by p̂i(k) = P (k|µ̂i, θ̂) from the fitted model. For in-
stance, in the special case that F (µi, θ) corresponds to Pois(µi), one has
p̂i(k) = exp(−µ̂i)µ̂ki /k!. This scenario is discussed in Wilson and Einbeck
(2015, 2016) with focus on the case k = 0. This abstract generalizes those
ideas to general k and F and proposes a generic diagrammatic tool.
The random variable N(k) follows a Poisson–Binomial distribution with
parameters p1(k), . . . , pn(k) (Chen and Liu, 1997). Hence, for any choice of
k and F , a range of plausible values of N(k) can be obtained by confidence

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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intervals from this distribution, which can be computed using the R package
poibin (Hong, 2013). By doing this for a range of values of k, one can draw
diagrams which give envelopes for plausible values of N(k) which can then
be compared to the true values. Since these diagrams resemble Christmas
trees, we refer to them as ‘Christmas tree plots’ from now on. We explain
the construction of the diagram in systematic form in the next section, and
give examples in the final sections.

2 The Christmas tree plot

For count data Y = (Y1, . . . Yn), we will typically be interested in the range
of counts K = [0,max(Y )], though in some applications, where very small
counts are not to be expected, one may prefer using K = [min(Y ),max(Y )].
Denote the chosen range by K = [ka, kb]. We construct the diagnostic plot
as follows.

(i) Fit the model F (µi, θ) to the data Y .

(ii) For k in ka...kb, obtain estimates p̂i(k). Use a Poisson-Binomial dis-
tribution to estimate the median m(k) = med(N(k)) under count
data model F , as well as lower and upper limits, say cα(k) and c̄α(k)
of a (1− α)% confidence interval for N(k).

(iii) Compute the median–adjusted bounds bα(k) = cα(k) − m(k) and
b̄α(k) = c̄α(k)−m(k).

(iv) Plot the functions bα(k) and b̄α(k) versus k.

(v) Add to the plot the observed adjusted counts, A(k) = N(k) −m(k)
of the observed data Y .

If the data is consistent with the distribution fitted, the curve A(k) should
(largely) stay within the adjusted bands bα(k) and b̄α(k). If the data is not
consistent with the distribution fitted then A(k) is likely not stay within
these bands. Additionally, when interpreting the bands as a measure of
typical variation of N(k), we can use this plot to diagnose whether the
counts exhibit less random variation than expected under model F .
One may argue that due to the consideration of a sequence of confidence
intervals for ka...kb one has to account for multiple testing issues. It should
be stressed, however, that we do not consider the proposed plot as a testing
procedure, but as a simple diagrammatic tool which supports the data
analyst in identifying potential model inadequacies, similar in spirit to a
QQ plot.
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TABLE 1. Simulated data with upper and lower confidence intervals for N(k)
and A(k).

k N(k) c0.1(k) c̄0.1(k) m(k) A(k) b0.1(k) b̄0.1(k)

0 38 19 33 26 12 -7 7
1 28 27 43 35 -7 -8 8
2 15 17 31 24 -9 -7 7
3 7 6 16 10 -3 -4 6
4 8 1 7 3 5 -2 4
5 1 0 3 1 0 -1 2
6 2 0 1 0 2 0 1
7 1 0 0 0 1 0 0

3 Simulation example

Consider a covariate–free data set of size n = 100 drawn from a zero-
inflated Poisson (ZIP) distribution with Poisson parameter 1.5 and zero-
inflation parameter 0.2, that is overall mean equal to 1.2. The data are given
in terms of N(k) in the 2nd column of Table 1. Following the procedure
outlined in Section 2 with F ∼ Pois(µ) yields 90% confidence intervals for
N(k) (displayed in the 3rd and 4th column of Table 1), resulting in the
Christmas tree plot displayed in the left hand panel of Figure 1. This plot
indicates that the Poisson model is not suitable, as visible by the number
of zero-observations falling well above the upper confidence band, as well
as by the adjusted count A(2) falling below the lower band. The right hand
plot is constructed similar to that of the left, except that here the zero-
inflated Poisson (ZIP) model serves as model F . Clearly this plot indicates
that a ZIP model is suitable for the data.

4 Application on biodosimetry data

We consider data consisting of n = 14430 chromosome aberration counts
previously studied by Oliveira et al. (2016). The covariate dose, with values
between 0 and 4.5Gy, gives the radiation dose applied to blood sample cells,
causing DNA damage in form of double–strand breaks. When incorrectly
repaired by the cellular DNA–damage response mechanism, this can lead to
dicentric chromosomes which can be counted under a microscope. That is,
each examined blood sample cell contributes, for known covariate dose, ex-
actly one count observation. For this data set, the counts take values in the
range from 0 to 5. Data of this type have been fitted traditionally through
Poisson regression models, though the presence of excess zero counts has
been regularly reported in the literature.
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FIGURE 1. Christmas tree plots for simulated covariate–free data. The dashed
curve corresponds to A(k) and the dotted curves give the median–adjusted
bounds.
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Table 2 displays the data under investigation, and Figure 2 contains the
Christmas Tree diagrams obtained when Poisson and zero–inflated Poisson
models, using a log–link and quadratic polynomial for dose, are fitted to
these data. The left hand plot clearly indicates the unsuitability of the
Poisson model, whereas the right hand plot indicates that ZIP is suitable.
Oliveira et al. (2016) carried out an extensive analysis of this data set,
applying several statistical tests and model selection criteria in order to
decide for an adequate modelling strategy. Specifically, they found that a
negative binomial type 2 model returned the lowest AIC (7489.1), closely
followed by a ZIP model (AIC=7490.4). Other models considered included
the Poisson as reference model (AIC=7504.7), and a Poisson Inverse Gaus-
sian (AIC=7495.2).
The two plots in Figure 3 corresponding to the NB2 and PIG models,
respectively, illustrate cases where the adjusted observed data line, A(k),
remains close to the centre line. For the NB2, all observations lie between
the 43rd and 57th quantiles of their respective Poisson–Binomial distribu-
tion. Hence, there is less random variation amongst observed counts than
would be expected under NB2, most likely indicating that the variance
of the fitted model is inflated in order to accommodate the number of
observed zeros. A similar effect is observed for the PIG model. In sum-
mary, these plots suggest that the ZIP model is the most adequate model
for these data, deviating from what would be concluded by looking at a
single–number model selection criterion such as AIC.
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TABLE 2. Frequency of dicentric chromosomes after acute whole body in vitro
exposure to doses between 0 and 4.5Gy of Cobalt-60 γ-rays. (This corresponds
to data set A1 in the notation of Oliveira et al. (2016), where also the reference
for the data source is provided.)

Frequency of counts
dose 0 1 2 3 4 5

0.00 2591 1 0 0 0 0
0.25 2185 8 0 0 0 0
0.75 2550 44 1 0 0 0
1.00 2231 54 2 0 0 0
1.50 1712 96 3 0 0 0
2.50 1196 123 7 1 0 0
3.00 1070 320 41 6 1 0
4.50 895 360 110 25 5 1

FIGURE 2. Christmas tree plots for biodosimetry data, with the hypothesized
distribution F corresponding to Poisson and ZIP, respectively.
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FIGURE 3. Christmas tree plots for biodosimetry data, with the hypothesized
distribution F corresponding to NB2 and PIG, respectively.
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sociales, Université de Liège, Belgium.
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1 Introduction

Dynamic systems are observed within many scientific fields and can be
compactly described by (systems of) ordinary differential equations (ODEs)
of the form {

dx

dt
(t) = f(t,x,θ); t ∈ [0, T ]

s.t. x(t0) = st0 for t0 ∈ T0 ⊂ [0, T ],
(1)

where f(t,x,θ) is a known nonlinear function of the state function(s) x(t)
and of the (unknown) ODE-parameters θ. If we consider the observed
(noisy) data (y) as realizations of a process driven by state functions solv-
ing a given ODE, we can estimate the data signal and the ODE-parameters
using statistical techniques. In particular, in what follows we suppose that

y = x(t|θ) + ε, (2)

where ε is a random error term. In this framework, we introduce the LODE-
PS (Linearized Ordinary Differential Equation P-splines) estimation strat-
egy for θ and x(t) based on iterative (penalized) least squares.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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2 Estimation procedure

In order to simplify our presentation, we assume here Gaussian distributed
errors with constant variance τ−1 and a one-dimensional x(t). We propose
to approximate the ODE solution using a linear combination of B-spline
functions: x(t|c) =

∑K
k bk(t)ck. In order to connect the estimated spline

coefficients to the ODE-model, we penalize for violations of Eq. (1). This
leads to the following penalized log-likelihood function:

2L(c,θ, τ, |γ,y) = N log(τ)− τ
N∑
i=1

(yi − xi(t|c))2 − γPEN(c,θ), (3)

where PEN(c,θ) =
∫
‖ẋ(s|c)− f (s,x(s|c),θ)‖2 ds, c is a K-vector of

spline coefficients, θ is a D-vector of unknown ODE-parameters and γ
is an ODE-compliance parameter such that x̂(t) is forced to solve (1) if
γ →∞.
It is not straightforward to maximize Eq. (3) since the optimal spline coeffi-
cients depend in a complicated way on θ and PEN is nonlinear in c and/or
θ. Suppose now that approximations to the state function x̃(t) and to the
ODE-parameters θ̃ are available. Following Bellman and Kalaba (1965),
Eq. (1) can be linearized as

dx

dt
(t) ≈ f̃(t) +

D∑
d=1

(θd − θ̃d)
∂f̃

∂θd
(t) + (x(t)− x̃(t))

∂f̃

∂x
(t), (4)

where f̃(t) = f(t, x̃, θ̃). Eq. (4) is a non-homogeneous linear ODE with
solution:

x(t) = p(t) +

D∑
d=1

θdqd(t).

Functions p(t) and qd(t) solve the linear ODEs

dp

dt
(t) = f̃(t)−

D∑
d=1

θ̃d
∂f̃

∂θd
(t) + (p(t)− x̃(t))

∂f̃

∂x
(t); p(t0) = x̃(t0),

dqd
dt

(t) =
∂f̃

∂θd
(t) + qd(t)

∂f̃

∂x
(t); qd(0) = 0,

(5)

and hence

p(t) = Λ(t)

∫ t

t0

Λ−1(s)

(
−∂f̃
∂x

(s)x̃(s)−
D∑
d=1

θ̃d
∂f̃

∂θd
(s) + f̃(s)

)
ds+ k,

qd(t) = Λ(t)

∫ t

t0

∂f̃

∂θd
(s)Λ−1(s)ds,
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with Λ(s) = e
∫ t
t0

∂f̃
∂x (s)ds

and k a constant depending on x̃(t0). Therefore,
we can maximize Eq. (3) and select γ by iterating between the following
steps:
0) Set initial values for all the unknowns: c̃, θ̃, γ̃ and τ̃ .
1) For fixed {c̃, θ̃, γ̃, τ̃}, update the vector of spline coefficients by minimiz-
ing the (quadratic) penalized criterion:

J(c|c̃, θ̃, γ̃, τ̃) = τ̃ ‖y −Bc‖2 + γ̃PEN`(c|c̃, θ̃), where

PEN`(c|c̃, θ̃) =

∫ ∥∥∥∥∥
K∑
k

ḃk(s)ck − f̃(s)−

(
K∑
k

bk(s)ck − x̃(t)

)
∂f̃

∂x
(s)

∥∥∥∥∥
2

ds,

and ḃk(s) is a first derivative of B-spline vector.
2) Update x̃(t) = x(t, c̃), compute p(t) and qd(t) and update θ̃ and τ by
maximizing the following criterion (quadratic in θ):

H(θ, τ |c̃) =
N

2
log τ − τ

2

∥∥∥∥∥y − p(t)−
D∑
d=1

θdqd(t)

∥∥∥∥∥
2

.

3) Update γ = (ED)/‖PEN`(c̃, θ̃)‖2 (see Ruppert et al., 2003) where ED is
the effective model dimension of the smoother (see Hastie and Tibshirani,
1990).
LODE-PS generalizes the QL-ODE-P-spline framework (Frasso et al., 2015).
It can easily deal with unknown state (initial and/or boundary) conditions
and, by modifying Eqs. (5), can be adapted to handle systems of ODEs
(as illustrated in Section 3). In addition the proposed (profiled) likelihood
optimization simplifies the one introduced by Ramsay et al. (2007) when
dealing with nonlinear systems since all the unknowns in (3) are estimated
by solving simple least squares problems.
The presented framework can be extended to handle non Gaussian data
(such as in GLM settings). In the next section we show an example based
on Poisson distributed data.

3 Two real data examples

We first analyze the dynamic of two competing species by modeling the
population density of snowshoe hares and Canadian lynx over time as de-
scribed by the Lotka-Volterra model:

dx1

dt
(t) = x1 (t) [θ1 − θ2x2 (t)],

dx2

dt
(t) = −x2 (t) [θ3 − θ4x1 (t)].

Figure 1 shows the raw data and the estimates obtained using the LODE-PS
approach introduced in Section 2. The estimated state functions appropri-
ately describe the observed dynamics and they are close to the numerical
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solutions computed using a Runge-Kutta scheme for the LODE-PS param-
eter estimates.
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FIGURE 1. Raw data and estimates obtained for the Canadian lynx vs snowshoe
hare predator-pray dynamics. The estimated system parameters are reported in
the legend.

As second example we analyze infectious disease epidemic data. Figure 2
shows the total number of infectious and recovered subjects (black dots)
reported for a common-cold outbreak observed during 21 days (from Oc-
tober 1967) in the Tristan da Cunha island (see e.g. Shibli et al., 1971).
We analyze these data using a Susceptible-Infectious-Removed epidemic
compartmental model:

dS

dt
(t) = −β I

N
(t)S(t),

dI

dt
(t) = β

I

N
(t)S(t)− δI(t),

dR

dt
(t) = δI(t).

Here we assume a constant population size (N) and consider the number
of new infectious subjects at each time dI+(t) as Poisson distributed. This
implies that the optimal spline coefficients can be estimated by maximizing:

J(c|β̃, δ̃, γ̃) =

21∑
i=1

(
dI+(ti) logµ(ti|c, β̃, δ̃)− µ(ti|c, β̃, δ̃)

)
− γ̃PEN`(c|c̃, β̃, δ̃).
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where µ(t|c, β̃, δ̃) = E(dI+(t)|c, β̃, δ̃) = βS(t|c, β̃, δ̃)I(t|c, β̃, δ̃). For c esti-
mated in Step 1, the ODE parameters can be estimated by maximizing:

H(β, δ|ĉ) =

21∑
i=1

(
dI+(ti) log (βνS(ti)νI(ti))− (βνS(ti)νI(ti))

)
,

with
νS(t) = pS(t) + βqS,β(t) + δqS,δ(t),
νI(t) = pI(t) + βqI,β(t) + δqI,δ(t).

Functions pi(t), qi,j(t) for i ∈ {S, I} and j ∈ {β, δ} are the solutions of
the linearized ODEs defined for the first two equations of the SIR model
in analogy with Eqs. 5.
The estimated state functions in Figure 2 (dashed black lines) describe
the observed epidemic states sufficiently well and are compliant with the
ODE numerical solutions (gray solid lines). The optimal ODE parameters
appear consistent with the results presented in the literature and obtained
by using different approaches (see e.g. Toni et al., 2009).
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FIGURE 2. Raw data and estimates obtained for the common cold infectious
dynamics. The estimated SIR system parameters are reported in the legend.

4 Discussion

We presented the LODE-PS smoothing approach for the estimation of dy-
namic systems described by nonlinear (systems of) ODEs. The estimates
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are obtained by means of a profiled likelihood maximization procedure. Our
approach exploits a quasi-linearization of the ODE problem and enables to
estimate all the unknowns using simple least squares procedures. This rep-
resents a valuable simplification of the optimization task in both Gaussian
and non Gaussian settings.
We have evaluated the performances of the proposed methods by dealing
with two real data example. In both cases the LODE-PS approach ensured
satisfactory estimates.
The proposed framework can also be generalized. For example, it can be
extended to handle time-varying ODE-parameters (modeled, for example,
through P-spline smoothers) by modifying the profiled likelihood optimiza-
tion task in step 2).
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1 Case Study

The spectral behavior of vegetation, that is, the amount of reflective energy
measured in each individual or plant along the spectrum, depends of the
nature of the same, their interactions with solar radiation, other climatic
factors, availability of nutrients and water in their environment(Jensen,
2000). Warner et al, (2009) indicate that the information provided by the
spectral signature is the fraction of vegetation cover, chlorophyll content,
the Green Index of leaf area and other biophysical parameters of the plants.
The spectral signature in accordance with its resolution contains informa-
tion of reflectance for diferent wavelengths. In our research this consists of
900 wavelengths. As we has a data sequence which can be perceived al-
most as a function, is such a case that such data can be addressed through
Functional Data Analysis (FDA) (Ramsay & Silverman, 2005) (Ferraty &
Vieu, 2006).

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).



118 A Mixed Models with Functional Covariable

The aim of this research is to evaluate the concentration of chlorophyll in
Tabasco pepper plants under levels of stress caused by the type of fertilizer
applied and levels of irrigations. We used a factorial design with four levels
per factor. The levels for fertilizer are: F1 (Solution without Boron), F2
(Solution without Iron), F3 (Solution without Manganese) y F4 (complete
solution). For irrigation: R1 (15 ml), R2 (75 ml), R3 (115 ml) y R4 (225
ml)

We had eight replications per treatment, for a total of 128 experimental
units, which are Tabasco pepper plants. Each treatment was assigned ran-
domly to the experimental units in order to reduce experimental error.
Chlorophyll concentration was measured to the experimental units during
seven times (weeks) = 1; 2; 4; 5; 6; 7; 8. ,

2 Material and Methods

Chlorophyll data correspond to longitudinal measurements. It is intended
to capture the dependence between the measurements of the specific subject
through a Mixed Model with Functional Covariable (MMFC), where the
functional covariable is included by the operator Ψ(χ(t)) =

∫
T
ψ(t)χ(t)dt

where ψ(t), χ(t) ∈ H being H separable Hilbert space (Goldsmith, et al.
2012). For an individual i with ni repeated measurements over time, we
have an array of responses yi = (yi1, yi2, ..., yini)

T , which can be modeled
as

yi =

∫
T

χi(t)β̃(t)dt+Xiβ + Zibi + ei, (1)

where χi(t) and β̃(t) belong to H. Xi y Zi are matrices of fixed and random
effects, respectively. β, bi correspond to vector, for the fixed and random
effects like a traditional mixed model N(0, D) (Verbeke & Molenberghs,
2000) y ei is a vector of random errors N(0,Σ). Assuming the functional

data is χil(t) =
∑kχ
k=1 cijkφj(t), χi(t) = cTilφ and the functional parameter

can be expressed as β̃(t) =
∑kβ
j=1 υjθj(t), β̃(t) = θTυ, where φ y θ are:

basis functions of sizes kχ y kβ . We reconstructed the matrix of fixed effects

for an individual i as X̃i = (cTi Jφθ, X), matrix Jφθ is of size kχ, kβ It is
conformed by

∫
T
φi(t)θj(t)dt. The model is expressed as

yi = X̃iβ
∗ + Zibi + ei, (2)

where β∗T = (υTβT )is the vector of fixed effects must be estimated. In our
case the MMFC is estimated by Restricted Maximum Likelihood (REML)
(Patterson & Thompson, 1971)for variance components and the fixed ef-
fects by Generalized Least Squares (Verbeke & Molenberghs, 2000). For
confidence bands of functional parameter we use fully parametric Boot-
strap for Mixed Models.
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3 Results

The concentration of chlorophyll have an increasing linear behavior in terms
of weeks, for this reason we include time (in weeks) as a fixed effect. The
first level of the model under consideration is given by

Chlorophylli = β0i + β1. + β2. + β3it+

∫
T

χi(t)β̃(t)dt+ ei (3)

In the second level we considered the change of the specific subject intercept
and the variation of slope in terms of time

β0i = β0 + b0i

β1. = β1F1 + β2F2 + β3F3 + β4R1 + β5R2 + β6R3

β2. = β7F1R1 + β8F1R2 + β9F1R3 + β10F2R1 + β11F2R2 + β12F2R3

+ β13F3R1 + β14F3R2 + β15F3R3

β3i = β16 + b1i

The spectral signatures were smoothed using 20 B-Spline (Figure 1) which
were chose through the Generalized Cross Validation Criteria and the
number of basis functions for functional parameter β̃(t) were determined
through marginal Akaike Information Criterion. According to ANOVA re-
sults only irrigation factor was significant for explaining the chlorophyll
concentration, we also found that the trend over time is significant. Fur-
thermore Figure 2 shows that there are wavelengths significantly different
from zero.

FIGURE 1. Left Spectral signatures and Rigth Spectral signature smoothed
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TABLE 1. ANOVA
numDF denDF F-value p-value

(Intercept) 1 739.00 45119.99 0.00
Fertilizer 3 112.00 1.64 0.18
Irrigation 3 112.00 5.13 0.00

Time 1 739.00 540.87 0.00
Fertilizer:Irrigation 9 112.00 0.84 0.58
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FIGURE 2. Functional parameter with confidence bands

Acknowledgments: A special Thanks to the Organizing Committee of
International Workshop on Statistical Modelling for accept this work

References

Ferraty, F., & Vieu, P., (2006). Nonparametric functional data analysis: the-
ory and practice. Springer Science & Business Media.

Goldsmith, J., Crainiceanu, C. M., Caffo, B., & Reich, D. (2012). Longitu-
dinal penalized functional regression. Journal of the Royal Statistical
Society, Series C (Applied Statistics), 61(3), 453 – 469.

Jensen, J.R. (2005). Introductory digital image processing: a remote sens-
ing perspective. Series in geographic information science.. Pearson
Prentice Hall, South California. 526 p.

Patterson, H., and Thompson, R. (1971). Recovery of inter-block informa-
tion when block sizes are unequal Biometrika, 58(3), 545 – 554.

Ramsay, J., and Silverman, B., (2005). Functional Data Analysis. Springer.
New York,
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Abstract: A negative binomial regression model for parity (number of births)
is developed, in which mean parity is modelled with two components relating
to woman’s age. The first is a parametric growth curve which operates during
the childbearing years. The second is a cohort effect which models changes in
birth rates over time, and is a nonparametric term. The model is implemented
on Fijian data, and reveals different trends in childbearing between the two main
ethnic groups in that country.

Keywords: Negative binomial regression; Number of births; parity; Growth
curves; Splines.

1 Introduction

Patterns of parity, the number of times a woman has given birth, typically
vary across demographic groupings and over time. In a dataset collected at
a Fijian community health facility, examination of parity against woman’s
age reveals not only the expected positive trend with age during the child-
bearing years, but also a continuing upward trend post childbearing. The
latter is interpreted as a cohort effect due to a tendency to smaller family
sizes over the last few decades. It is of interest to characterise the difference
in the pattern of parity between the two ethnic groups, iTaukei (indigenous
Fijians) and Fijians of Indian Descent (FID). We develop a negative bino-
mial regression model for parity that adjusts for age by separating the
childbearing and cohort effects. The childbearing effect is characterised by
a parametric growth curve, while the cohort effect is modelled nonparamet-
rically. Maximum likelihood estimation is implemented with a two-stage it-
erative estimation procedure for the two components of the predictor. This

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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FIGURE 1. Histograms of parity and age by ethnicity

method is semiparametric in that it employs both parametric and nonpara-
metric functions of age. However, it is different from what is usually meant
by semiparametric regression models, as the parametric and nonparametric
terms are for the same covariate.

2 The data

The data were collected over the period 2013-14 at the Viseisei Sai Health
Centre in rural Fiji, on n = 5,136 women, of whom 48% were iTaukei
and 52% FID. Figure 1 shows intriguing differences in the distributions
of both parity and age over the two ethnic groups. Figure 2 shows the
relationship between parity and age, as estimated by a smoothing spline.
Parity increases till about the age of 40 (the childbearing years), then
flattens off, then increases again into old age. We consider separating the
effect of age on parity into two components: (1) the childbearing years; and
(2) a cohort effect, which operates across all ages and is the effect of having
borne children in a particular epoch.

3 Statistical model for parity

3.1 Childbearing effect

We employ obvious features of childbearing to characterise its effect in
the statistical model: all women start with zero parity; and parity is a
nondecreasing function of age, until fertility ceases with the menopause.
This suggests modelling expected parity with a growth curve, with lower
asymptote zero and upper asymptote expected parity at menopause. A
flexible parametric family of growth curves is given by the inverse of the
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FIGURE 2. Scatterplot of parity vs age, with smoothing spline.

generalized logistic function (Richards 1959), with lower asymptote zero,
upper asymptote k, and parameters b and w, which govern the slope and
shape:

y(x) =
k

(1 + e−bx)
w . (1)

We utilise (1) as the childbearing component of the parity model.

3.2 Cohort effect

The increasing trend of parity after the childbearing years, which we in-
terpret as a cohort effect, is less amenable to parametric assumptions than
the childbearing effect. While it appears from the data to be a positive
relationship, we do not wish to make any assumptions about its shape. We
therefore include it in the model as a smooth term s(x).

3.3 The regression model

We use a negative binomial regression model for parity (y):

y |x ∼ NB(µ, σ) ; µ =
k

(1 + e−bx)
w + s(x) (2)

where x is age, and b > 0, w > 0, k > 0. For interpretability and sta-
bility of computation we impose the constraint s(x) ≥ 0, and model s(x)
with exponentiated B-splines. A two-stage iterative procedure for likeli-
hood maximization is used: in the first stage, parameters of the growth
curve are estimated for fixed spline; and in the second stage parameters
of the spline are estimated for fixed growth curve. The R function optim

is used for the maximization. We note that in the region of childbearing



126 Two-component model for number of births

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●● ●

●

● ●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ● ●

●

●

●

● ●

● ● ●

●

●

●

● ●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

● ●

●

●●● ●

● ●●

●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●● ● ●●

●

●

●●●

●

● ●

● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

● ●

●

●

●●

●

●

●

●●

●

●

●

●● ● ●

●

●●

●

●●● ●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

● ●●●

●●

● ●

●

●

● ●

●● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●●

●

● ●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●

●●

●

● ●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ● ●●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●● ●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●●●

● ●●

●

●●● ●

●

●●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●●

●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

● ●

●

●

●

●

● ●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

● ●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●●

● ●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●●

●

●● ●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

● ● ●●●

●

●

● ●

●

●

● ●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●● ●●

● ●

●

●

●

●

●

●● ●

●

●

●

●●

●●

● ●

●

●

● ●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●●●●

●

●

● ●

●● ●●

●

● ● ●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

● ●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●●

●● ●

● ●● ●●

●

●

●

●

●● ● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

● ● ●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●●●

●

● ●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●●

●

●●

●

●

● ●

●

● ● ●●●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●● ●●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ● ●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

● ●

●●

●

●

●●

●● ●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●● ● ● ●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

● ●●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●● ● ●

●

●

●

●

●

●

●

●

● ●●● ●

●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

● ● ●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●●

●

●

●

●

●

●●

● ●

●

● ●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●● ●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

● ●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●●

●

●

● ●● ●

●

●●

●

●

●

●●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

● ●●

●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

● ●

●●

●●

● ●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●● ●●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●● ●

●

●

● ●

●

●

● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●● ●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●●

●

●

●

●

●

●●

● ●●

●

●●

●

●

●

●

● ●

●

●

●

● ●●●●

● ●●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●● ●

●

●

●

●

●●

●●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●

●

● ● ● ●●●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●●

●

●

●●●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

● ●

●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

●● ●

●

●

● ●

●

20 30 40 50 60 70

0
2

4
6

8
10

Age

P
ar

ity

growth curve
cohort effect
fitted total

FIGURE 3. Scatterplot of parity vs age, with fitted curves.

growth the model is not identifiable; however we obtain sensible results by
initially setting the curve s(x) to zero, and allowing the growth curve to
dominate the solution in the region of growth due to childbearing.

4 Results

The model was initially implemented on all women. Fitted curves are shown
in Figure 3, and can be seen to match the smoothing spline curve. The
growth curve flattens off around the age of 40, at the upper asymptote of
k̂ = 3.22. The cohort effect becomes active around the age of 50, meaning
that women who are currently 50 years and over were bearing children
at a time when rates of birth were higher than in the current cohort of
childbearing women. Randomized quantile residuals (not shown) indicate
a good model fit.

Ethnicity effects

Figure 4 shows the components of the fitted model by ethnic group. The
FID group has growth curve asymptote k̂ = 2.74, compared to the iTaukei
k̂ = 3.71. The cohort effect for iTaukei is weak, whereas for FID it rises
sharply from the age of 50. From the age of about 60, mean parity for
the two ethnic groups is not very different, at a mean of about 4 births
per woman. Nonparametric bootstrap confidence intervals were computed
for the total parity curves by ethnicity. These show the clear separation
of mean parity between the groups at all ages except the oldest (women
around 70 years of age and older).
Putting this together we conclude that for the oldest women in our cohort,
mean parity for both ethnic groups was around 4 births. In the FID group,
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mean parity has decreased to 2.74 births in the current cohort of childbear-
ing women, whereas for iTaukei, higher parity persists at 3.71 births. This
accords with the trend noted by Seniloli (1992): “.. fertility is levelling off
among Fijians and consistently declining among the Indians in Fiji”.
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b. Cohort effect
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FIGURE 4. Fitted growth curves, cohort effects and total parity by ethnicity.
95% bootstrap confidence intervals are shown for total parity.
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Abstract: Loss given default (LGD) is a proportion of a credit exposure that
is lost if the obligor defaults on a loan. Response variable LGD contains val-
ues between 0 and 1 including both 0 and 1, where 0 means that the balance
is fully recovered while 1 means total loss of exposure at default. This article
addresses two alternative semi parametric approaches for modelling loss given
default, which is measured on the interval [0,1]. The class of models are very flex-
ible and can accommodate skewness and bimodal characteristics of LGD data.
The dependence of the predictors of each of the parameters (of the proposed
model distribution for LGD) on explanatory variables can be additive P- splines,
regression trees or neural network models. The proposed models are applied to a
loss given default data set and compared with current popular models.

Keywords: GAMLSS; generalised Tobit model; logit distribution.

1 Introduction

Loss given default is the key parameter for a bank’s minimum regulatory
capital requirement based on Basel II framework. Therefore modelling LGD
is pivotal for financial regulators and retailers. However modelling LGD
poses substantial challenges due to the bounded nature of LGD data and
its unusual distribution, (see Bellotti and Crook(2012)). LGD values often
lie on the interval [0,1] and the distribution tends to be bimodal with modes
close to the end values.
Previous approaches for modelling (the distribution of) LGD on [0,1] in-
clude ordinary least squares, e.g. Qi and Yang (2009), fractional response

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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regression (FRR), Papke and Wooldridge (1996), transformation models,
e.g. Qi and Zhao (2011) and Li et al. (2014), the inflated beta model,
Ospina and Ferrari (2010), a two step approach combining an ordinal lo-
gistic regression model and normal error model, Li et al. (2014), and Tobit
models obtained by censoring a normal distribution or one or two shifted
gamma distributions Li et al. (2014). In a very recent paper Hossain et al.
(2016) proposed inflated logitSST and generalised Tobit models for the
proportion response variable on the interval (0,1].
The purpose of this paper is to provide two flexible modelling approaches
for a proportion response variable measured on the interval from 0 to 1,
including both 0 and 1, i.e. range [0,1]. In the first approach a flexible
distribution for Z with range (−∞,∞) is transformed to Y with range
(0,1), using an inverse logit transformation, Y = 1/(1 + e−Z), which is
then inflated by including point probabilities for Y at 0 and 1. The second
approach is a generalised Tobit model, in which a flexible distribution for
Z on (−∞,∞) is censored below 0 and above 1 to provide range 0 ≤ Y ≤ 1
with probabilities at 0 and 1.
In practice, for each of the two modelling approaches, any available distri-
bution on (−∞,∞) within the gamlss package, Stasinopoulos and Rigby
(2007), can be used for Z, for example the flexible four parameter skew
exponential power (SEP), skew student t (SST ), sinh arc-sinh (SHASHo)
or bi-modal skew symmetric normal (BSSN) distribution, Hasan and El-
Bassiouni (2016). In the gamlss package the dependence of the predictors
of each of the parameters of the proposed model distributions for Y on ex-
planatory variables can be linear, non-linear, non-parametric smooth func-
tions, regression trees or neural network models. Note that Qi and Zhao
(2011) and Li et al. (2014) found that regression tree and neural network
models outperformed linear parametric models.

2 Models

2.1 Logit distribution

Any distribution on range −∞ < Z < ∞ can be transformed to a re-
strictive range 0 < Y < 1 by using an inverse logit transformation Y =
1/(1 + e−Z). The distribution of Y is called a logit distribution. If Z has
a four parameter distribution denoted D is general, i.e. Z ∼ D(µ, σ, ν, τ),
then the distribution of Y is called a logit D distribution denoted Y ∼
logitD(µ, σ, ν, τ). For example if Z has a bi-modal skew symmetric normal
distribution Z ∼ BSSN(µ, σ, ν, τ) on (−∞,∞), then Y has a logitBSSN
distribution, Y ∼ logitBSSN(µ, σ, ν, τ) on (0, 1). The logitBSSN distri-
bution is created using the function gen.Family() in gamlss which allows
any gamlss distribution with range (−∞,∞), (e.g. BSSN), to be trans-
formed to a new gamlss distribution, (e.g. logitBSSN), with range (0, 1).
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2.2 LogitBSSN, inflated at 0 and 1

An inflated logit distribution is suitable for a proportion response variable
on 0 ≤ Y ≤ 1, that includes both 0 and 1. An inflated logit distribution
is a mixture of a logit distribution for 0 < Y < 1 and a Bernoulli distri-
bution for Y at 0 or 1. The model includes three components: a discrete
value 0 with probability p0, a discrete value 1 with probability p1 and a
logit distribution on the unit interval (0, 1) with probability (1− p0 − p1).
For a general four parameter logit distribution, logitD(µ, σ, ν, τ), then the
inflated logit distribution is denoted Y ∼ Inf.logitD(µ, σ, ν, τ, ξ0, ξ1) with
mixed (continuous-discrete) probability (density) function given by

fY (y|µ, σ, ν, τ, ξ0, ξ1) =

 p0 if y = 0
p1 if y = 1
(1− p0 − p1)fW (y|µ, σ, ν, τ) if 0 < y < 1

(1)

for 0 ≤ y ≤ 1, where W ∼ logitD(µ, σ, ν, τ) has a logitD distribution,
where 0 < p0 < 1, 0 < p1 < 1 and 0 < p0 + p1 < 1. The parameters ξ0
and ξ1, are related to p0 and p1 by ξ0 = p0/p2, ξ1 = p1/p2. For example if
W ∼ logitBSSN(µ, σ, ν, τ) then Y has a inflated logitBSSN distribution
Y ∼ Inf.logitBSSN(µ, σ, ν, τ, ξ0, ξ1) with −∞ < µ < ∞, σ > 0, −∞ <
ν <∞, τ > 0, ξ0 > 0, and ξ1 > 0.
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FIGURE 1. PDF of lositBSSN and InflogitBSSN

Model (1) can be fitted using a new function gamlssinf0to1(). The log
likelihood function for the Inf.logitBSSN model (1) is equal to the sum of
the log likelihood functions of the logitBSSN model and the multinomial
model with three level (MN3). Hence the parameter sets (µ, σ, ν, τ) and
(ξ0, ξ1) are ‘information’ orthogonal. Consequently model (1) can be fitted
by fitting two models: a logitBSSN model for 0 < y < 1 and an MN3(ξ0, ξ1)
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for levels defined by y = 0, y = 1 and 0 < y < 1. Figure 1 depicts various pdf
plots of the logitBSSN and inflated logitBSSN distribution which portrays
the model’s ability to accommodate various shapes (i.e. skewness, kurtosis
and bimodality).
The inflated logit distributions (e.g. Inf.logitBSSN) have the advantage
of extra flexibility, in that the probabilities of Y at 0 and 1 are modelled
independently of the distribution on (0,1), (e.g. logitBSSN), but with the
cost of introducing extra parameters (ξ0, ξ1) into the model. Note that
the logit transformation is sensitive to values of Y very close to 0 or 1.
To avoid this problem it may be necessary for values 0 < Y < 1 to be
adjusted to Y ′ = b+ (1− 2b)Y , for a predetermined small constant b, prior
to model fitting, see Li et al. (2014). Alternatively values very close to 0
and 1 can be adjusted to 0 and 1 respectively by Y ′ = 0(if Y < b) + Y ( if
b < Y < 1− b) + 1(if Y > 1− b).

2.3 Generalised type I Tobit model

The generalised Tobit model on [0,1] requires censoring below 0 and above
1 of a flexible model distribution on (−∞,∞) for its positive probabilities
at 0 and 1. Censoring refers to the transformation of observations outside
the limiting interval to the border values. Here the values in the model
distribution below 0 and above 1 are transformed to 0 and 1 respectively.
Let Z ∼ D(µ, σ, ν, τ) be a flexible uncensored distribution on (−∞,∞). Let
Y ∼ Dic(µ, σ, ν, τ) be the corresponding distribution left censored below
0 and right censored above 1 (called interval censoring, ic) with resulting
range [0, 1]. Then

Y =

 0 if Z ≤ 0
Z if 0 ≤ Z ≤ 1
1 if Z ≥ 1.

Hence the (mixed continuous-discrete) probability (density) function of Y
is given by

fY (y) =

 P (Z ≤ 0) if y = 0
fZ(y) if 0 < y < 1
P (Z ≥ 1) if y = 1

for 0 ≤ y ≤ 1. In principle D can be any distribution on (−∞,∞), for
example the four parameter SEP , SST , SHASHo or BSSN distributions
given in Section 1. Interval censoring is achieved using gamlss function
gen.cens() in the gamlss package gamlss.cens.
In the generalised Tobit models the probabilities of Y at 0 and 1 are directly
related to the distribution between 0 and 1 and so are less flexible, but the
model is more concise (i.e. parsimonious) in that it has two less parameters.
Also the Tobit model is not so sensitive to values of Y very close to 0 or 1.
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3 Data

Loss Given Default (LGD) is the proportion of the exposure lost follow-
ing a default. It is also called the severity of loss. The range of LGD is
bounded on [0, 1]. The LGD value also tends to follow a bi-modal distribu-
tion. The motivating data example is the LGD values collected from one
of the leading banks in the USA. The data frame comprises 7713 small
business loan defaults between 2000 and 2007. In this analysis the response
variable SEVERITY (LGD) is modelled using four covariates: Month-on-
Books (MOB), hazard rate (hrate), year of origin (ORIGIN-YR) and year
of default (DEFAULT-YR). The four explanatory variables are treated as
quantitative variables.

4 Model Selection

The distributions on [0,1] considered for LGD were the beta inflated at
0 and 1 distribution (BEINF), Ospina and Ferrari (2010), together with
two proposed models: the inflated logitBSSN and generalised type I Tobit
(BSSNic) models and also the standard Tobit model which is based on
interval censored normal distribution (NOic). Each distribution parameters
was modelled using additive P-splines in the four explanatory variables.
The results are reported in the Table 1. The inflated logitBSSN has by
far the lowest AIC and SBC values among the four models. Note that the
value of 12180 is added to all values of deviance, AIC and SBC for clear
presentation.

TABLE 1. Comparison of Fitted Models

Method Parameters df Deviance AIC SBC

logitBSSN 6 133 0 268 1199
GenTobit(BSSNic) 4 84 13632 13800 14384

BEINF 4 86 6149 6321 6918
Tobit(NOic) 2 41 18777 18859 19145

5 Conclusion

This paper proposes an inflated logit distribution and a generalised type I
Tobit model for loss given default (LGD). Both models use the four param-
eter bi-modal BSSN distribution (used in order to model the bimodality
of the distribution of LGD). Flexible nonparametric P-splines were used
to model the parameters of the distribution of the response variable using
covariates. The dependence of each of the parameter of the two proposed
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models on explanatory variable can be replaced with linear, regression trees
or neural network models. The proposed models were compared with the
beta inflated and Tobit models. Based on the AIC and SBC criterion, the
study concluded that the inflated logitBSSN provided the best fit to the
loss given default data.
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1 Introduction

A common idea is that the dynamic of a particular science area is observable
through the publications and the citations related to the field. A research
scientist will see his contribution be evaluated according to his publications,
and his citations. This approach relies on the idea that the more an article is
cited, the more it has contributed to the field (see the numerous algorithms
dedicated to the ranking of papers based on the citation network solely -
Zhou et al. 2015). While simple this hypothesis is the current working
model because measurements/observations are easy under this framework.
The reality is probably more complex. Several factors are to be considered
if one wants to understand why an article is being cited, or why a particular
science domain is rapidly expanding. Among those, we may mention the
number of publications in the field, which can be linked to the number of
journals and the number of researchers embracing the field. The amount of
funding available is important too, and very often related to the previously
mentioned factors.
It can be very difficult to assess the part played by these aforementioned
factors in a science domain / research scientist success. In this article,

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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we introduce a new approach to understand these article / citation data
and model them. Our framework is the network structure of the articles
published in a science domain, where each vertex represents an article, and
the edges between them can be many things: citations, common authors or
institutions...
We propose an approach where publications related to the field are events
of a point process which intensity can be modelled using a Hawkes process
intensity. Then, we assume that for each article, its citations are thinned
event from the publication process. Because the citation network is a dy-
namical structure, we ask two questions:

• How many vertices will appear during the next time period?

• Where (in the network) will these vertices be located?

The latter question is related to the edges of the networks, which are created
according to the thinned process described above. It is a quite complex
question though, as to answer it we have to model the creation of edges
between nodes. We believe our model helps answering those.

2 Data

We work on a dataset of 492 articles selected on the ”Web of Knowl-
edge” using the keywords ”approximate Bayesian computation”, ”ABc”,
and ”Likelihood free”. We only kept the articles published on or before
2013. The choice of these keywords has been made as this area of research
is quite recent, and then can be qualified as an emerging area of research.
For each of the articles, we recorded the title, the keywords, the authors,
the date of publication, the journal of publication and the references.

2.1 Point process aspect - Network nodes

First, we assume that publications (or publication times - nodes of the
network) are events of a Hawkes process with exponential decay. This rep-
resentation has been chosen as it conveys two important ideas. Each new
publication in the domain increases the chances of another publication in
the same domain in the near future; the longer time since the last publica-
tion, the less likely a new publication event will occur.

2.2 Thinned process - Network edges

Then, we assume that the citation (edges of the network) times of a partic-
ular paper are following a thinned point process, where the parent process
events are the publication times for all the papers in the same domain.
Citation events depend on a number of features, not being necessarily ob-
servable. For instance, an author is likely to cite its previous work. Or works
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FIGURE 1. Evolution of the ”ABc” publication network. Four dates are dis-
played: May 1992, September 1996, January 2006 and January 2011. We are very
much in the presence of a spatio-temporal process, where the spatial dimension
is embedded in the network manifold.

from colleagues part of the same institution. Or previous articles published
in the same journal. And of course, articles in the same domain are likely
to be cited. For the sake of completeness of the literature review. Our aim
is to include these elements in the thinning model.
Other graph or networks can be defined, by changing the nature of the edge
between two vertices:

• Authorship network. That is, two articles are connected if the have
at least one author in common.

• Institutional network. Two articles are connected if the have at least
one institution in common.

• Two articles are connected if they are published in the same journal.

These networks are also likely to be complementary. That is, the citation
network is a simple linear transformation of the three networks listed above.
We analysed the networks of the top 20 most cited articles in the data we
collected. Out of these networks, only one connection (citation) cannot be
explained by either a common author, a common institution or a common
journal. It is then important for these features to be included in the thinned
process model.
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3 Modelling

3.1 Publications

Our model has two sets of observations, hence two components. In the first
component, the events of interest are the publication times of articles re-
lated to the field of interest. This model can be used as a proxy to the
dynamic of the field. It is modelled using a Hawkes process, following the
assumptions that the intensity of the process increase whenever a publica-
tion in the domain is made. Its intensity λ(t) is defined such that,

λ(t) = µ(t) +

∫
T

κ(t− s)dH(s), (1)

where µ(t) is a deterministic baseline intensity, and κ(t) is a kernel function
expressing the influence (usually positive) of past events on the current
value of the intensity process (see Hawkes, 1971). In this article, we will
more specifically be using fully parametric intensity functions of the form,

λ(t) = a+
∑
tk<t

βe−δ(t−tk) (2)

which describe a Hawkes process also known as exponentially decaying
self-exciting point process (see Dassios and Zhao, 2013). In this formula, a
describes the baseline (or long-term) intensity, δ the rate of the exponential
decay, and β the influence of an event on the intensity.

3.2 Citations

In the second component, we assume that the citation process is a sub-
process of the publication process (a thinned process with a given thinning
probability). Let Nt be the number of new articles (nodes) at time t, It =
{1, ...,

∑
τ<tNτ} be the set of existing articles, and Jt = {1, ..., Nt} be

the set of appearing articles at time t. Then our observations are ci,j,t
for i ∈ It, j ∈ Jt, t ∈ {1, ..., T} where ci,j,t = 1 if article j cites article
i. For every observation ci,j,t we have a set of predictors Xi,j which we
use to model pi,j(t) = p(ci,j,t = 1|Xi,j). We define this probability as
the thinning probability applied to the publication process defined in the
previous section. We include in pi,j(t) all the information related to article
i, such as its author(s), institution(s), journal it has been published in. We
expect that probability to be time-varying, in particular we assume that
the time since publication and the time since last citation are important
factors. Its mathematical expression is:

logit(pi,j(t)) = Xi,jβ + δ1 min
k

(t− tk)+ + δ2(t− ti)+ (3)

where tk is the k-th citation event time, ti is the publication (birth) time,
X are covariates (journal name, number of references, ...).
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For a given article i, the citation process is then an inhomogeneous Poisson
process with intensity µi(t) =

∑
j pi,j(t)λj(t), where λj(t) is the intensity

of the process for the articles which share the same features as article j.

4 Prediction

Based on this modelling option, we can answer the questions asked int the
introduction using the prediction properties of the models.
How many vertices will appear over the next period? By itself, this question
is technically straightforward to answer, using the Hawkes process model
to simulate events in the next period, allowing us to then predict N̂t.
Where (in the network) will these vertices be located? To predict the pres-
ence of an edge between two vertices, we calculate the probabilities p̂i,j(t), i ∈
It, j ∈ Jt. For a given new node j∗, we have a set of possible edges with
probability pi,j∗(t) given by Eq. 3. It is a partial answer though, as it does
not tell us how many edges are connected to this new vertex. To answer
that, we propose two approaches. In the first one, we use a ROC curve to
identify the best threshold, and create an edge for probabilities above that
threshold. For a given new node j∗, we will then a a set of edges, and an
estimated location. In the second approach, we use the estimated proba-
bilities to simulate the creation of edges between the new node and the old
ones. For each simulation, we will have an estimated location for j∗. With
enough simulations we can draw a map of likely locations for j∗.
The accuracy of the answer to the second question depends on the level of
details we can provide in the prediction of the first question. For example,
predicting that 15 new articles will be published over the next 4 months
provides less details than predicting 6 articles in Wiley, 5 articles in Oxford
Press and 4 articles in Springer. But then, the uncertainty in these figures
will be higher. A trade-off is then necessary.

5 Results

5.1 Fitting

Using this modelling approach, we can identify features that favour cita-
tion events. For instance, the following features favoured citations in the
analysed dataset:
- Common journal, themes or authors, published in proceedings, writing a
review article.
The following features, on the other hand, disfavoured citations:
- Time since last citation, writing a long article, publishing later in the
calendar year.
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5.2 Prediction

If we use the simplest model, that is we do not add features to the intensity
estimation of the Hawkes process, the prediction for the number of article
published in 2012 is 144 with a 95% confidence interval [94, 195]. The actual
number of article published in 2012 was 128. And using the apporaches
described above, we have the estimated locations for a new node j∗ in
Figure 2.

FIGURE 2. Map of potential new publication (node) location. Grey levels for
map of likely location, green dot for the true location, red dot for the ROC-esti-
mated location.

5.3 Conclusion

We have presented a spatio-temporal approach to model citations and pub-
lications, and tried two answer two questions. The second one though is
only partially answered, as we only could provide spatial estimation for a
single new node, and not a set of them.
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Abstract: We propose a novel non-homogeneous dynamic Bayesian network
(NH-DBN) model with partially sequentially coupled network parameters. The
idea is to segment a time series of network data using a multiple changepoint
process, and to model the data in each segment by linear Bayesian regression
models. Our new model is an extension of a recently proposed Bayesian network
model with sequentially coupled network parameters. The earlier model, which
we refer to as the fully sequentially coupled NH-DBN model, assumes that all
segments are coupled with the same coupling strength between segments. Our new
partially coupled NH-DBN model infers for each segment whether it is coupled
to (or uncoupled from) the preceding one. Our new model can thus be seen as a
consensus model between (i) an uncoupled NH-DBN model without any network
parameter coupling and (ii) a fully sequentially coupled NH-DBN model.

Keywords: Non-homogenous dynamic Bayesian networks; Partially sequentially
coupled network parameters

1 Introduction

In systems biology non-homogeneous dynamic Bayesian networks (NH-
DBNs) have become popular tools for modelling cellular regulatory pro-
cesses. The idea is to use a multiple changepoint process to divide the
observed temporal network data into disjunct time segments, and to model
the data within each segment by linear Bayesian regression models. For
most cellular processes it is reasonable to assume that the network structure
(i.e. the regulator sets or regressors of each network node) do not change
over time, while the network parameters (regression coefficients) are time-
dependent. Thus, except for identical regulator sets there is no information-

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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sharing among segments. To allow for information-sharing with respect to
the network parameters a NH-DBN with sequentially coupled network pa-
rameters was proposed in Grzegorczyk and Husmeier (2012). The idea is to
allow for information sharing between neighbouring segments by using the
posterior expectation of the network parameters as prior expectation for the
consecutive segment. Node-specific coupling parameters regulate the vari-
ance of the parameter priors and so the strength of coupling. A shortcoming
of this approach is that all neighbouring segments are coupled with the same
coupling parameter. Low coupling parameters yield peaked (informative)
and high coupling parameters yield vague (uninformative) parameter priors
for the subsequent segments. Thus, for networks with substantially varying
parameters, information coupling can be counter-productive, as uncoupling
can only be reached by making the network parameter priors vague. In this
paper we address this shortcoming. We extend the model from Grzegorczyk
and Husmeier (2012) by introducing an option to uncouple. This gives the
new partially sequentially coupled NH-DBN model. In the new model we
infer for each individual segment whether it is coupled to (or uncoupled
from) the preceding one. Our model regularizes between the two extreme
cases: An uncoupled NH-DBN with independent parameters (= every seg-
ment is uncoupled) and a NH-DBN with sequentially coupled parameters
(= every segment is coupled to the preceding one).

2 Methodological details

In this representation we focus on one single network node y which takes the
role of the regulatee (response) in a segment-wise linear Bayesian regression
model. Given a set of k regulators or regressor variables π = {X1, . . . , Xk},
we assume that the temporal data can be divided into H segments with
different regression coefficients. Let yh be the vector of the response values
and Xπ,h be the design matrix for segment h, where each Xπ,h includes a
first column of 1’s for the intercept. For h = 1, . . . ,H we have:

yh ∼ N (Xπ,hwh, σ
2I) (1)

where σ2 is the noise variance parameter, with σ−2 ∼ GAM(0.01, 0.01),
and wh (h = 1, . . . ,H) are the (k+ 1)-dimensional segment-specific regres-
sion coefficient vectors, on which we impose the novel priors:

P (wh) = N (vh ·mh−1, λ
vhδ1−vhσ2I) (2)

We set v1 = 0, m0 = 0, λ−1 ∼ GAM(3, 3) and δ−1 ∼ GAM(2, 0.2),
as in Grzegorczyk and Husmeier (2012). The newly introduced indicator
variables vh ∈ {0, 1} indicate whether segment h ≥ 2 is coupled to segment
h− 1 (vh = 1) or not, and mh (h ≥ 1) is the posterior expectation of wh:

mh =
(
λ−vhδ−(1−vh)I + XT

π,hXπ,h

)−1 (
λ−vhδ−(1−vh)mh−1 + XT

π,hyh

)
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We assume the new indicator variables v2, . . . , vH to be Bernoulli dis-
tributed, vh ∼ BER(p), where p ∈ [0, 1], can either be set fixed (e.g.
p = 0.5) or be assumed to be Beta distributed, p ∼ BETA(a, b).

• p = 0 yields vh = 0 for all h, so that independent priors, P (wh) =
N (0, δσ2I), are used for the segments. This refers to an uncoupled
NH-DBN without information sharing between the parameters wh.

• p = 1 yields vh = 1 (h ≥ 2), and thus gives the priors from Grze-
gorczyk and Husmeier (2012), P (wh) = N (mh−1, λσ

2I) for h ≥ 2.
The model is then the (fully sequentially) coupled NH-DBN,
proposed in Grzegorczyk and Husmeier (2012).

• Our new partially (sequentially) coupled NH-DBN infers the
variables vh (h ≥ 2) from the data and therefore tries to find the right
trade-off between the uncoupled NH-DBN and the coupled NH-DBN.

For a network with n nodes we apply the segment-wise linear regression
model to each node yi (i = 1, . . . , n) separately, and the potential regula-
tor sets of yi are all subsets of the other n − 1 nodes, symbolically πi ⊂
{y1, . . . , yi−1, yi+1, . . . , yn}. The system of parent sets G := {π1, . . . , πn}
describes a network G: there is an edge yj → yi if and only if yj ∈ πi.

3 Simulation study

We generate synthetic data for a yeast network with 5 genes: GAL80,
GAL4, SWIS, CBF1, and ASH1. We consider each gene to be a response
variable y and generate data using the segment-wise linear model from
Eq. (1) with the regulator sets: πASH = {SWIS}, πSWIS = {GAL4},
πGAL80 = {GAL4, SWIS}, πGAL4 = {GAL80, CBF1}, and πCBF1 =
{ASH,SWIS}. In a dynamic Bayesian network all interactions are subject
to a time delay, so that the segment-specific design matrices are built from
the values of the regulators at the preceding time points. We perform two
simulations studies.
Simulation study 1: We assume that there are H = 4 segments, divided
by three changepoints, and that each segment has 10 time points. We sam-
ple the segment-specific regression coefficients wh in Eq. (1) as follows: For
segment h = 1 we draw samples from a standard multivariate Gaussian
distribution and we re-normalise the sampled vectors to Euclidean norm
1; this gives w1. For the subsequent segments we sample again from stan-
dard multivariate Gaussian distributions and we re-normalise the sampled
vectors to Euclidean norm κ = 0.1; this yields w?h. If segment h is cou-
pled (vh = 1) we add w?h to the vector of the preceding segment h − 1,
wh = wh−1 + w?h, so that we obtain very similar parameters. If segment
h is uncoupled (vh = 0), we compute: wh = (−1) · wh−1 + w?h, so that we
obtain dissimilar parameters. We distinguish three scenarios (S1)-(S3):
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• (S1) uncoupled data vh = 0 for all h,

• (S2) coupled data vh = 1 for h ≥ 2

• (S3) partially coupled data (v1, . . . , v4) = (0, 1, 0, 1)

For (S1)-(S3) we consider 5 noise levels σ = 0.1, 0.2, 0.4, 0.8, 1.6. This gives
15 combinations and for each we generate 25 independent data instanti-
ations. In this study we assume the three changepoints locations (i.e. the
segmentation) to be known and fixed.
Simulation study 2: We assume that there are H = 2 segments, divided
by a changepoint, and that each segments has 10 time points. For each
gene y of the yeast network we draw an unbiased coin to decide whether
the second segment is coupled or not; i.e. we draw v2 ∈ {0, 1}. For v2 = 0 y’s
regulation changes drastically, w2 = (−1) ·w1 +w?2 , for v2 = 0 its regulation
stays similar, w2 = w1 + w?2 , where w1 and w?2 are random samples from
standard multivariate Gaussian distributions, re-normalised to Euclidean
norm 1 and 0.1, respectively. This refers to a partially coupled scenario. In
each data set each gene has a probability of 0.5 to be coupled (v2 = 1) and
a probability of 0.5 to be uncoupled (v2 = 0). We consider 6 noise levels
σ = 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 and for each σ we generate 25 independent data
instantiations. Different from the first study, we assume the changepoint
location (i.e. the segmentation) to be unknown, so that the changepoint(s)
have be inferred from the data.

4 Simulation Details

We use a multiple changepoint process to segment the data into H seg-
ments, but unlike Grzegorczyk and Husmeier (2012) we assume that there
is a network wide changepoint set which applies to the complete network
G; i.e. all nodes y1, . . . , yn share the same segmentation.
For inference we extend the partially collapsed Gibbs sampler from Grze-
gorczyk and Husmeier (2012), which samples the hyperparameters δ, λ,
σ, the regulator sets π, and the changepoint set (if unknown) from the
data. For our model we include an additional Metropolis-Hastings move
to change the values of the variables vh. The new move randomly selects
one vh (h ≥ 2) and proposes to set it to 1 − vh. The acceptance proba-
bility can then be computed with the Metropolis-Hastings criterion, where
the Hastings-ratio is equal to 1. The goal of our study is to infer the 8
interactions of the yeast network. We perform Markov Chain Monte Carlo
(MCMC) simulations on each data set to generate samples of networks
Gt = {π1,t, . . . , πn,t}t=1,...,T . We average accross those networks to obtain
for each individual edge j → i (j, i ∈ {1, . . . n} : j 6= i) a marginal pos-

terior probability êj,i = 1
T

∑T
t=1 Ij→i(Gt), where Ij→i(Gt) = 1 if j ∈ πi,

and Ij→i(Gt) = 0 otherwise. As êj,i ∈ [0, 1] and the true interactions are
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𝝈 
𝝈 

FIGURE 1. Results of simulation study no 1: Known segmentation. Net-
work reconstruction accuracy for simulated yeast network data. There are H = 4
segments with 10 observations each, and the changepoint locations are assumed
to be known. Three scenarios (coupled, uncoupled and partially coupled data) are
distinguished. Left panel : The average total AUROC values for the three scenar-
ios (S1)-(S3). Right panel : AUROC differences between the models for partially
coupled data (S3), with errorbars representing t-test confidence intervals.

known, ei,j ∈ {0, 1}, we can quantify the network reconstruction accuracy
of the three NH-DBN models for each individual data set in terms of three
AUROC values.

5 Results

The results of the two studies are shown in FIGURES 1-2. The results of
the first study, shown in FIGURE 1, suggest that the new partially coupled
NH-DBN model is never inferior to the other two models. For uncoupled
data (S1) it performs as well as the uncoupled NH-DBN, and for coupled
data (S2) it performs as well as the coupled NH-DBN. For partially coupled
data (S3) and moderate noise levels σ, the t-test confidence intervals for the
AUROC differences in the right panel of FIGURE 1 show that the partially
coupled NH-DBN is significantly superior to the two competing NH-DBNs.
The results of the second study are shown in FIGURE 2. For partially
coupled data with an unknown changepoint the partially coupled model
yields significantly better AUROC values than the other two approaches,
see bottom left and top right panel of FIGURE 2. The uncoupled model
appears to perform slightly better than the fully coupled NH-DBN for
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𝛔 𝛔 

FIGURE 2. Results of simulation study no. 2: Unknown segmentation.
Network reconstruction accuracy for simulated yeast network data. There are
H = 2 segments with 10 observations each, and the changepoint(s) are unknown
and have to be inferred from the data. The data are partially coupled. Top left
panel : The average total AUROC values of the three NH-DBN models. Lower
left and right panels: Pairwise AUROC differences between the three NH-DBN
models, with errorbars representing t-test confidence intervals.

σ ≥ 0.8, see lower right panel. However, the differences are significant only
for σ = 1.6.

6 Conclusion

Our results suggest that the partially sequentially coupled NH-DBN, pro-
posed here, is a promising consensus model between the standard uncou-
pled NH-DBN and the fully sequentially coupled NH-DBN. The new model
appears to infer correctly from the data whether network parameters are
coupled or not. The new partially coupled NH-DBN was never inferior to
the gold-standard NH-DBN model, and for partially coupled data the new
model performed significantly better than the two competing NH-DBNs.

References

Grzegorczyk, M., and Husmeier, D. (2012). A non-homogeneous dynamic
Bayesian network with sequentially coupled interaction parameters for
applications in systems and synthetic biology. Statistical Applications
in Genetics and Molecular Biology, 11(7), online article.



Median bias reduction of maximum
likelihood estimates

Euloge C. Kenne Pagui1, Alessandra Salvan1, Nicola Sartori1

1 Department of Statistical Sciences, University of Padova

E-mail for correspondence: kenne@stat.unipd.it

Abstract: For a scalar component of interest of a multidimensional parameter,
we propose a median modification of the profile score equation whose solution re-
spects equivariance under reparameterizations. As Firth’s (1993) implicit method
for bias reduction, the new estimator does not depend on the maximum likeli-
hood estimator and is effective in preventing infinite estimates. We also extend
the approach to a multidimensional parameter of interest. An application and a
simulation to a generalized linear model for binary data compare the proposed
method with maximum likelihood and implicit bias reduction.
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1 Introduction

Most available corrections of the maximum likelihood estimator or of the
score estimating equation are aimed at first-order bias adjustment. See
Kosmidis (2014) for an up to date review. Although bias correction of the
maximum likelihood estimator depends on the chosen parameterization,
implicit methods for bias correction following Firth (1993) exhibit some
relevant advantages. In particular, the modified estimating equation does
not depend explicitely on the maximum likelihood estimator and has been
found to overcome infinite estimate problems that may arise with positive
probability mainly, but not only, in models for discrete or categorical data.
For a scalar parameter of interest, we propose a median modification of the
profile score equation whose solution i) is second-order median unbiased;
ii) respects equivariance under reparameterizations; iii) does not depend
on the overall maximum likelihood estimator and is effective in preventing
infinite estimates. The modification is obtained by considering the median

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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as a centering index for the profile score and defining a new estimating
function by subtracting from the profile score its approximate median.
The approach is extended to a vector parameter, maintaining component-
wise equivariance and second-order median centering. An application and
a simulation in a generalized linear model for binary data compare the pro-
posed method with maximum likelihood and Firth’s (1993) bias reduction.
The new method proves to be remarkably accurate in achieving median
centering of the estimator.

2 Modified score

For data y, consider a regular model with probability mass function p
Y

(y; θ)
and parameter θ with real components (θ1, . . . , θp). Let `(θ) be the log like-
lihood and U(θ) = ∂`(θ)/∂θ, the score function. The maximum likelihood

estimator θ̂ is a solution of U(θ) = 0. We assume that the covariance matrix
of U(θ), i(θ), i.e. Fisher information, and third-order cumulants of U(θ) are
finite and of order O(n), where n is the sample size or, more generally, an
index of information in the data.
Let θ = (ψ, λ), with ψ a scalar parameter of interest. We denote by

`
P

(ψ) = `(ψ, λ̂ψ) the profile log likelihood for ψ, where λ̂ψ is the maxi-
mum likelihood estimate of λ for a given value of ψ. The profile score is
U
P

(ψ) = ∂`
P

(ψ)/∂ψ. Using Cornish-Fisher expansion (see e.g. Pace and
Salvan, 1997, Section 10.6), the following asymptotic expansion holds for
the median of the profile score in the continuous case

Meθ {UP (ψ)} = κ1ψ −
1

6

κ3ψ

κ2ψ
+O(n−1) . (1)

In (1), κjψ, j = 1, 2, 3, are the first three cumulants of U
P

(ψ), possibly
replaced by suitable expansions.
A modified profile score can thus be defined by equating U

P
(ψ) to the

leading term of its median, giving

Ũ
P

(ψ) = U
P

(ψ)− κ1ψ +
1

6

κ3ψ

κ2ψ
. (2)

In (2), the modification term is of order O(1) and only the leading terms of
asymototic expansions for κjψ, j = 1, 2, 3, are needed to ensure that Ũ

P
(ψ)

has median zero with error of order O(n−1). The needed expansions can be
obtained using results in McCullagh and Tibshirani (1990) and Barndorff-

Nielsen and Cox (1989, Chapter 7) and are evaluated at (ψ, λ̂ψ).

Let ψ̃ be the estimator defined as solution of Ũ
P

(ψ) = 0. The modified
profile score has median zero with error of order O(n−1), i.e.

Pθ

{
Ũ
P

(ψ) ≤ 0
}

=
1

2
+O(n−1) . (3)
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If Ũ
P

(ψ) is monotone decreasing in ψ, the events Ũ
P

(ψ) ≤ 0 and ψ̃ ≤ ψ
are equivalent so that, from (3), ψ̃ will be median unbiased with error of
order O(n−1), i.e. second-order median unbiased. On the other hand, the

asymptotic distribution of ψ̃ is the same as that of ψ̂.
Under interest-respecting reparameterizations Ũ

P
(ψ) transforms as a co-

variant tensor of order one, so that ψ̃ behaves equivariantly, as does ψ̂.
Modification (2) can be used also in the discrete case, ignoring the oscilla-
tory terms in the Cornish-Fisher expansion.
A limitation of (2) is that it allows estimation of a scalar component of
θ at a time and requires constrained maximum likelihood estimates of the
remaining parameters. An extension for joint estimation of θ is proposed by
Kenne Pagui et al. (2016). Let indices a, b . . . take values in {1, . . . , p}\{r}
with summation understood when they are repeated. Moreover, let Ur be
a generic component of U(θ), irs be a generic entry of i(θ) and νab be a
generic entry of the inverse of the matrix with entries iab. The modified
score vector Ũ(θ) has components

Ũr = Ur − γraUa − κ1r +
1

6

κ3r

κ2r
, r = 1, . . . , p , (4)

where γra = irbν
ab and κjr, j = 1, 2, 3, are as in (2) referred to ψ = θr.

Then, the joint estimator θ̃ is defined as solution of Ũ(θ) = 0.

Let θ̃r be the r-th component of θ̃ and denote here by θ̃
P

r the solution of
Ũ
P

(θr) = 0, with Ũ
P

(·) given by (2). Kenne Pagui et al. (2016) show that,
in a regular model,

θ̃r − θ̃
P

r = Op(n
−3/2) ,

r = 1, . . . , p, thus achieving componentwise second-order median unbiased-
ness.

3 An application to binary regression

We consider the endometrial cancer grade dataset analyzed e.g. in Agresti
(2015, Section 5.7.1). The goal of the study was to evaluate the relation-
ship between the histology of the endometrium of 79 patients and three
risk factors: neovasculation (NV), pulsatility index of arteria uterina (PI)
and endometrium height (EH). Logistic regression maximum likelihood es-
timation leads to infinite maximum likelihood estimate of the effect of NV
due to the quasicomplete separation problem. Let us consider first the co-
efficient of NV as the parameter of interest while the remaining parameters
are treated as nuisance. The estimate from (2) is equal to 3.883, while
Firth’s (1993) bias reduced estimate is equal to 2.929. The corresponding
standard errors are 2.407 and 1.551, respectively. The joint estimate β̃ of
the four components of the parameter β, obtained using (4), are reported

in Table 1, together with β̂ and the implicit bias reduced estimate β̂∗. A
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TABLE 1. Endometrial cancer study: logistic regression estimates (s.e.).

intercept NV PI EH

β̂ 4.305 (1.637) +∞ (+∞) -0.042 (0.044) -2.903 (0.846)

β̂∗ 3.775 (1.489) 2.929 (1.551) -0.035 (0.040) -2.604 (0.776)

β̃ 3.969 (1.552) 3.869 (2.298) -0.039 (0.042) -2.708 (0.803)

simulation study has been performed in order to evaluate the properties
of estimators of β in terms of percentage probability of underestimation
(PU%), median absolute error (MAE), bias (B), root mean squared error
(RMSE) and coverage of Wald-type confidence intervals (Coverage). Table
2 shows the results obtained with 10,000 replications, covariates fixed at
the observed values and β = (1.5, 2, 0,−2). The new method proves to be
remarkably accurate in achieving median centering of all components of
the estimator, as indicated by PU%. We also note that in 684 samples out
of 10,000 the maximum likelihood estimate of the coefficient of NV is infi-
nite, while both β̂∗ and β̃ are always finite. Coverage for the three methods
is rather similar, although coverage probabilities for maximum likelihood
should be judged with caution since samples with infinite estimates are ex-
cluded. Similar results have been observed in unreported simulations with
a probit model.

TABLE 2. Endometrial cancer study. Simulation of estimates of the regression
coefficients with logistic link: PU%, percentage of underestimation; MAE, median
absolute error; B, bias; RMSE, root mean squared error. For maximum likelihood,
B, RMSE and coverage are conditional upon finiteness of the estimates.

PU% MAE B RMSE Coverage (%)

β̂ 45.1 0.97 0.29 1.60 95.8
43.0 0.66 0.12 0.90 97.4
51.0 0.03 0.00 0.04 95.0
56.0 0.57 -0.26 1.02 96.0

β̂∗ 52.6 0.86 0.00 1.38 96.6
53.0 0.56 0.02 0.90 97.4
49.6 0.02 0.00 0.04 96.3
44.4 0.52 0.01 0.83 94.8

β̃ 50.1 0.90 0.09 1.46 96.4
49.7 0.59 0.15 1.07 97.5
50.7 0.02 0.00 0.04 96.1
49.6 0.52 -0.10 0.89 95.8
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Abstract: Random-effects models are frequently used to synthesise information
from different studies in meta-analysis. While likelihood-based inference is at-
tractive both in terms of limiting properties and in terms of implementation,
its application in random-effects meta-analysis may result in misleading conclu-
sions, especially when the number of studies is small to moderate. The current
paper shows how methodology that reduces the asymptotic bias of the maximum
likelihood estimator of the variance component can also substantially improve
inference about the mean effect size. The results are derived for the more general
framework of random-effects meta-regression, which allows the mean effect size
to vary with study-specific covariates.
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1 Meta-analysis and meta-regression

Meta-analysis is a widely applicable approach to combine information from
different studies about a common effect of interest. One major topic of
debate in meta-analysis is how to best deal with the heterogeneity across
studies. A large body of applications has resorted to using the formulation
described in DerSimonian & Laird (1986), which accounts for the between-
study heterogeneity via a random-effects specification.
Suppose there are K studies about a common effect of interest, each of
them providing pairs of summary measures (yi, σ̂

2
i ), where yi is the study-

specific estimate of the effect, and σ̂2
i is the associated estimation variance
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(i = 1, . . . ,K). In some situations, the pairs (yi, σ̂
2
i ) may be accompa-

nied by study-specific covariates xi = (xi1, . . . , xip)
T, which describe the

heterogeneity across studies. In the meta-analysis literature, it is usually
assumed that the within-study variances σ̂2

i are estimated well enough to
be considered as known and equal to the values reported in each study.
Under this assumption, the random-effects meta-regression model postu-
lates that i) y1, . . . , yK are realizations of random variables Y1, . . . , YK ,
respectively, which are independent conditionally on independent random
effects U1, . . . , UK ; ii) the conditional distribution of Yi given Ui = ui is
N(ui + xT

i β, σ̂
2
i ), where β is an unknown p-vector of effects.

We use the random-effects meta-regression model as a working model for
theoretical development, and in §4, we illustrate the good performance of
the derived procedures under deviations from this working model.
Typically, xi1 = 1 and the random effect Ui is assumed to be distributed ac-
cording to N(0, ψ) (i = 1, . . . ,K), where ψ accounts for the between-study
heterogeneity. In matrix notation, and conditionally on (U1, . . . , UK)T = u,
the random-effects meta-regression model is

Y = Xβ + u+ ε, (1)

where Y = (Y1, . . . , YK)T, X is the model matrix of dimension K × p with
xT
i in its ith row, and ε = (ε1, . . . , εK)T is a vector of independent errors

each with a N(0, σ̂2
i ) distribution. Under this specification, the marginal

distribution of Y is multivariate normal with mean Xβ and variance Σ̂ +
ψIK , where IK is the K × K identity matrix and Σ̂ = diag(σ̂2

1 , . . . , σ̂
2
K).

The random-effects meta-analysis model is a meta-regression model where
X is a column of ones.
The parameter β is naturally estimated by weighted least squares as β̂(ψ) =
{XTW (ψ)X}−1XTW (ψ)Y , with W (ψ) = (Σ̂ + ψIK)−1. Then, inference

about β can be based on that, under model (1), β̂(ψ) has an asymp-
totic normal distribution with mean β and variance XTW (ψ)X. In this
case, the reliability of the associated inferential procedures critically de-
pends on the availability of an accurate estimate of the between-study
variance ψ. A popular choice is the DerSimonian & Laird (1986) estimator

ψ̂DL = max {0, (Q− n+ p)/A}, where Q = (y −Xβ̂F)TΣ̂−1(y −Xβ̂F) and

β̂F = β̂(0) and A = tr(Σ̂−1) − tr{(XTΣ̂−1X)−1XTΣ̂−2X}. Viechtbauer

(2005) presents evidence on the loss of efficiency of ψ̂DL, which can impact
inference (see also, Guolo, 2012).
Inference about β can alternatively be based on the likelihood function.
The log-likelihood function for θ = (βT, ψ)T in model (1) is

`(θ) = −1

2
log |W (ψ)| − 1

2
R(β)TW (ψ)R(β), (2)

where |W (ψ)| denotes the determinant of W (ψ) and R(β) = y − Xβ. A
calculation of the gradient s(θ) of `(θ) shows that the maximum likelihood
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estimator θ̂ML = (β̂T

ML, ψ̂ML)T for θ results from solving the equations{
s(β)(θ) = XTW (ψ)R(β) = 0p ,

s(ψ)(θ) = RT(β)W (ψ)2R(β)− tr [W (ψ)}] = 0 ,
(3)

where 0p denotes a p-dimensional vector of zeros, and s(β)(θ) = ∇β`(θ) and

s(ψ)(θ) = ∂`(θ)/∂ψ, so that β̂ML = β̂(ψ̂ML). As observed in Guolo (2012)
and Zeng and Lin (2015), inferential procedures that rely on first-order
approximations of the log-likelihood (e.g., procedures based on likelihood-
ratio and Wald statistics) perform poorly when the number of studies K is
small to moderate.

2 Bias-reducing penalized likelihoods

Using the results in Kosmidis and Firth (2009, 2010), straightforward cal-
culation gives that the first term in the expansion of the bias function of the
maximum likelihood estimator is b(θ) = {0T

p , b(ψ)(ψ)}T, where b(ψ)(ψ) =
−tr{W (ψ)H(ψ)}/tr{W (ψ)2}, with H(ψ) = X{XTW (ψ)X}−1XTW (ψ).

An estimator that corrects for the bias of θ̂ML results from solving the
adjusted score equations s∗(θ) = s(θ) − F (θ)b(θ) = 0p+1 (Firth, 1993;
Kosmidis and Firth, 2009). After some algebra, the adjusted score functions
for β and ψ are found to be s∗(β)(θ) = s(β)(θ) and

s∗(ψ)(θ) = RT(β)W (ψ)2R(β)− tr [W (ψ){IK −H(ψ)}] = 0 ,

respectively. The expression for the differential of the log-determinant gives
that the adjusted score functions s∗(β)(θ) and s∗(ψ)(θ) can also be obtained
as derivatives of the penalized log-likelihood function

`∗(θ) = `(θ)− 1

2
log
∣∣F(ββ)(ψ)

∣∣ , (4)

where `(θ) is as in (2), F(ββ)(ψ) = XTW (ψ)X is the β-block of the in-
formation matrix F (θ), and |·| denotes determinant. So, the solution of
the adjusted score equations is the maximum penalized likelihood estima-
tor θ̂MPL. For β = β̂(ψ), expression (4) reduces to both the logarithm
of the approximate conditional likelihood of Cox and Reid (1987) for in-
ference about ψ, when β is treated as a nuisance component, and to the
restricted log-likelihood function of Harville (1977). Hence, maximising the
bias-reducing penalized log-likelihood (4) is equivalent to calculating the
maximum restricted likelihood estimator for ψ. The latter estimator has
originally been constructed to reduce underestimation of variance compo-
nents in finite samples as a consequence of failing to account for the degrees
of freedom that are involved in the estimation of the fixed effects β.
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2.1 Penalized likelihood inference

The profile penalized likelihood function can be used to construct confi-
dence intervals and regions, and carry out hypothesis tests for β. If β =
(γT, λT)T, and λ̂MPL,γ and ψ̂MPL,γ are the estimators of λ and ψ, re-
spectively, from maximising (4) for fixed γ, then the penalized deviance

2{`∗(γ̂MPL, λ̂MPL, ψ̂MPL) − `∗(γ, λ̂MPL,γ , ψ̂MPL,γ)} has the usual limiting
χ2
q distribution, where q = dim(γ). To derive this limiting result, note

that the adjustment to the scores in (3) is additive and O(1), so the extra
terms depending on it and its derivatives in the asymptotic expansion of
the penalized likelihood disappear as information increases.

3 Inference on standardized mean differences

The profile penalized likelihood is developed under the validity of the
random-effects meta-analysis model. This assumption may be unrealistic,
especially in settings where the estimation variances are directly related
to the associated summary measure. Here, we examine the performance
of penalized likelihood inference and of other popular methods under an
alternative specification of the data generating process, where the study-
specific effects and their variances are calculated by simulating individual-
within-study data. Specifically, we assume that the ith study consists of
two arms with ni individuals each, and that n1, . . . , nK are independent
uniform draws from the integers {30, 31, . . . , 100}. Then, conditionally on
a random effect αi ∼ N(0, φ), we assume that the observation zi,rj for the
jth individual in the rth arm is the realisation of a N(µ+ Ir(δ + αi)σ, σ

2)
random variable, where I1 = 0 and I2 = 1. Note that the difference be-
tween the marginal variances of the arms increases with φ. The true effects
are set to µ = 0, σ = 1 and δ = −2. The study-specific effect of interest is
δ, estimated using the standardized mean difference yi = Ji(z̄i,2 − z̄i,1)/si,
where s2

i is the pooled variance from the two arms of the ith study, and
Ji = 1 − 3/{8(ni − 1) − 1} is the Hedges correction (see, e.g., Borenstein
et al., 2009, Chapter 4). The corresponding estimated variance for yi is
σ̂2
i = 2Ji/ni+Jiy

2
i /(4ni), which is a quadratic function of yi. The between-

study variance φ ranges from 0 to 2.5 and the number of studies K from
5 to 50. For each considered combination of φ and K, 10 000 data sets are
simulated using the same initial state for the random number generator.
Figure 1 shows the empirical coverage of confidence intervals based on
i) the profile penalized likelihood, ii) the inversion of Skovgaard’s statistic,
which is designed to produce second-order accurate p-values for tests on the
mean effect size (see, Guolo 2012), iii) the DerSimonian & Laird estimator

β̂(ψDL) and its estimated variance
∑K
i=1 1/(σ̂i + ψ̂DL), and, iv) the recent

double-resampling proposal in Zeng and Lin (2015).
The profile penalized likelihood interval has comparable performance to the
one based on Skovgaard’s statistic, with the latter having empirical cover-
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FIGURE 1. Empirical coverage probabilities of two-sided confidence intervals for
increasing values of φ, when (a) K = 10 and (b) K = 35, and for increasing
values of K when (c) φ = 0.25 and (d) φ = 2. The curves correspond to the
proposed profile penalized likelihood method (solid), the DerSimonian & Laird
method (dashed), the Zeng & Lin double resampling method (dotted), and the
Skovgaard’s statistic (dotted-dashed). The grey line is the 95% nominal level.

age that is slightly closer to the nominal level for a wider range of values
for φ. In general, though, the numerical inversion of Skovgaard’s statistic
can be unstable due to the discontinuity of the statistic around the maxi-
mum likelihood estimator. In contrast, the calculation of profile penalized
likelihood intervals is not prone to such instabilities. Intervals based on the
DerSimonian & Laird estimator and double resampling perform poorly.

4 Case study

Ambulatory hysteroscopy is a useful instrument to diagnose intrauterine
pathologies. Cooper et al. (2010) perform a meta-analysis about the ef-
ficacy of different types of local anesthesia used to control pain during
hysteroscopy. The available data refer to the use of paracervical anesthesia
and consist of the standardized mean differences of pain scores measured
at the time of hysteroscopy from five randomized controlled trials. The
DerSimonian & Laird estimate of ψ is ψ̂DL = 1.08, while the maximum
likelihood estimate is ψ̂ML = 2.31, which is appreciably larger. The maxi-
mum penalized likelihood estimate is even larger; ψ̂MPL = 2.93.
The DerSimonian & Laird method strongly supports the importance of
the local anesthesia efficacy with a p-value of 0.007, as does the double
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resampling approach with a p-value of 0.018. The opposite conclusion is
obtained using the penalized deviance, which results in a p-value of 0.137.
The Skovgaard statistic gives the same conclusion, with a p-value of 0.158.

5 Associated material

Kosmidis et al. (2015) provides a more detailed account of this work, with
reproducible case studies and extensive simulation studies.
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Abstract: Firth (1993) and Kosmidis and Firth (2009) show that estimates with
smaller asymptotic bias than the maximum likelihood estimate can be obtained
by suitably adjusting the score function. This approach, though, is not directly
applicable in cases where the likelihood is intractable, such as for example, gen-
eralised linear mixed models. The current work proposes the Iterated Bootstrap
with Likelihood Adjustment, that can reduce bias of the maximum likelihood
estimator regardless of the tractability of the likelihood. Simulation studies are
used to illustrate the effectiveness of the proposed bias-reduction method. The
results also show an improvement in inference about the regression coefficients.
We conclude with an application on the salamander mating dataset.
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1 Introduction

The popularity of maximum likelihood (ML) in fitting regular statistical
models is partly because, under standard regularity conditions, the ML
estimator is asymptotically unbiased and fully efficient. However, for fi-
nite samples the ML estimator can be severely biased. Such severe bias
is observed, for example, in the estimation of the variance components in
generalised linear mixed models (GLMMs) and can affect the performance
of standard inferential procedures, like Wald tests. While there is a large
repository of methods to reduce bias, the intractability of the likelihood
in the case of GLMMs prevents the direct use of some of the most pop-
ular ones, like the adjusted scores functions approach (Firth, 1993) and
asymptotic bias corrections (Efron, 1975).
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The current work proposes computational methods for the reduction of
bias of the ML estimator that are applicable regardless of the tractabil-
ity of the likelihood. Our methods systematically correct the mechanism
that produces the ML estimates by introducing a small bias in the score
function. We adapt and extend the framework in Firth (1993) and Kos-
midis and Firth (2009) to the GLMM context. This extension relies on
the use of Laplace approximation of the log-likelihood and Monte Carlo
approximation of the bias function.

2 Model formulation

Generalised linear mixed models are widely used for analysing non-normal
clustered data. The key characteristic of such models is the use of random
effects to capture the between-cluster heterogeneity. McCullogh et al. (2008,
Chapter 7) provide a thorough description of these models.
A GLMM is specified by (i) the linear predictor, (ii) the link function,
(iii) the conditional distribution for the response variable given the ran-
dom effects, and (iv) the random effects distribution. The linear predictor
is Xβ +Zα, where X is the N × p matrix of fixed-effects terms associated
with the p regressors, β is the corresponding p×1 vector of the fixed-effects
regression coefficients, Z is the N × q design matrix for the q random ef-
fects and α is the q× 1 vector of the random effects. The conditional mean
µi of the response is modeled as g(µi) = XT

i β + ZT
i α, where g(·) is the

link function. Given an unobserved vector of random effects, the response
vector Y is assumed to consist of conditionally independent elements, each
following a distribution from the exponential family. To complete the spec-
ification of the model we assign a distribution to the random effects, which
are commonly assumed to follow a multivariate normal distribution with
zero mean.
In general, the integrals involved in the likelihood of GLMMs are intractable
and numerical integration techniques can be used to evaluate them (McCul-
logh et al., 2008, Chapter 7). Maximising the approximated log-likelihood
with respect to the model parameters yields the maximum approximate
likelihood (MAL) estimates.
As an illustration of the bias of MAL estimates for GLMM parameters,
we performed a simulation study where we considered a generalised lin-
ear model for binary responses with logistic link function and a random
intercept. If the data is arranged in a series of q clusters of observations
(Yij , Xij), where i identifies the cluster, and j ∈ {1, . . . , ni} identifies sub-
jects within clusters, the model can be expressed as

Yij |α ∼ indep. Bernoulli(πij)

αi ∼ i.i.d. N(0, σ2
α)

logit(πij) = β0 + β1Xij + αi . (1)
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Table 1 shows the estimated bias, mean squared error and Monte Carlo
error of the MAL estimates based on 1000 simulated samples, with true
parameter values (β0, β1, σα) := (0, 5,

√
1.5), Xij = j/n, and using the

Laplace approximation for evaluating the log-likelihood. There are q = 8
levels of the random effect and n ∈ {15, 50, 100} observations per level
of the random effect. The bias of β1 is large, especially for small n, and
the random effect parameter σα is underestimated, but as n increases bias
decreases in absolute value. The mean squared error of the parameter es-
timates decreases with increasing sample size. We also evaluate the size of
the Wald test for the null hypothesis β1 = 5 using the MAL estimates. The
Type I error is estimated to be equal to 0.028, 0.053, 0.055 at a 5% nominal
level for n = 15, 50, 100, respectively, indicating bad performance of the
Wald test when n is small.

TABLE 1. Bias, mean squared error (MSE) and Monte Carlo error (MCE) of
the maximum approximate likelihood estimates for the parameters of model (1).

Bias MSE MCE

n 15 50 100 15 50 100 15 50 100

β0 -0.041 0.002 0.004 0.512 0.276 0.246 0.023 0.017 0.016
β1 0.313 0.097 0.063 2.824 0.680 0.318 0.049 0.026 0.018
σα -0.193 -0.123 -0.109 0.424 0.172 0.140 0.020 0.013 0.011

3 Bias reduction in models with intractable likelihood

Firth (1993) showed that an estimator with o(N−1) bias, where N is the
sample size or some other measure of how information accumulates for
the parameters of the model, results by the solution of the adjusted score
equations S∗(θ) = S(θ) − I(θ)b(θ) = 0. In the latter equations, θ is the
p-dimensional parameter of the model, S(θ) is the score function, I(θ) is
the observed information matrix, and b(θ) is the first-order term in the
expansion of the bias of the ML estimator. More generally, the theory in
Firth (1993) and Kosmidis and Firth (2009) guarantees that estimators
with o(N−1) bias result by the solution of

S∗(θ) = S(θ)− I(θ)B(θ) + v(θ) = 0 , (2)

where B(θ) = Eθ(θ̂ − θ) is the bias of the ML estimator θ̂ and v(θ) =
Op(N

−1/2). For models with intractable likelihood, (2) cannot be solved
directly, because all quantities involved are generally intractable.
In this paper we will consider variations of (2) that are tractable and lead to
estimators with o(N−1) bias. Theorem 1 shows that Laplace approximation
can be used to construct such variations.
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Theorem 1: Let θ̃∗ be the solution of

S̃∗(θ) = S̃(θ)− Ĩ(θ)B(θ) = 0 , (3)

where S̃(θ) and Ĩ(θ) are the gradient and negative Hessian matrix of
Laplace approximation of the log-likelihood. Then, θ̃∗ has o(N−1) bias.
Proof: Using the results in Tierney and Kadane (1986) it can be shown
that S(θ) − S̃(θ) = O(N−1) and I(θ) − Ĩ(θ) = O(N−1). Given also that
B(θ) is of order O(N−1), S̃∗(θ)− [S(θ)− I(θ)B(θ)] has smaller order than
Op(N

−1/2). Hence, from (2), the solution of (3) has o(N−1) bias. �

4 Iterated Bootstrap with Likelihood Adjustment

A natural way to estimate the generally unknown bias B(θ) in (3) is by
Monte Carlo. Let B̂T (θ) be the Monte Carlo estimator of the bias at θ
based on T samples generated under the model at θ. Substituting B̂T (θ)
for B(θ) in (3), the adjusted score equations are

S̃∗T (θ) = S̃(θ)− Ĩ(θ)B̂T (θ) = 0 . (4)

A direct approach for evaluating the solution of (4), θ̃∗T , is through a quasi
Newton-Raphson iteration of the form

θ(j+1) = (2θ(j) − θ̄(j)
T ) + {Ĩ(θ(j))}−1S̃(θ(j)) , (5)

where θ(j) is the candidate value for θ̃∗T at the jth iteration, and θ̄
(j)
T is the

average of the MAL estimators calculated for each of T simulated samples
from the model at θ(j). Starting from the MAL estimate, a single iteration
gives a bootstrap corrected estimate, so iteration (5) can be seen as a gen-
eralisation of the bootstrap for bias correction (Efron and Tibshirani, 1993,
Ch. 10). For this reason we refer to the proposed bias reduction method as
Iterated Bootstrap with Likelihood Adjustment (IBLA). A stopping crite-
rion for the iterations is |S̃∗T (θ(j+1))| < ε, for some small ε > 0. We generally
recommend using the same state for the random number generator in each
iteration in order to achieve a smooth estimator of the bias function.
We now revisit the simulation study performed in Section 2. Table 2 reports
the IBLA parameter estimates of model (1), where the simulation size T
used for the calculation of B̂T (θ) was set to 200, 500, 1000 for n = 15, 50,
100, respectively, and ε = 0.05. The results show that IBLA reduces the
bias of MAL, especially for small and moderate values of n. A reduction
in the mean squared error is also observed. The empirical size of the Wald
test when the statistic is based on the IBLA estimates is calculated to be
0.051, 0.051, 0.055 at a 5% nominal level for n = 15, 50, 100, respectively.
Comparing with the results in Section 2, use of the bias-reduced estimates
seems to also deliver a marked improvement in inference compared to the
MAL estimates.
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Figure 1 shows the IBLA iterations for one of the simulated samples, with
the MAL estimates used as initial values. In each iteration a new set of T
bootstrap samples is generated from the model at the parameter estimates
from the previous iteration, and (5) is used to obtain updated estimates.
For this particular sample the estimates stabilize in less than 10 iterations.

TABLE 2. Bias, mean squared error (MSE) and Monte Carlo error (MCE) of
the IBLA estimates for the parameters of model (1).

Bias MSE MCE

n 15 50 100 15 50 100 15 50 100

β0 -0.015 0.006 0.012 0.430 0.270 0.244 0.021 0.016 0.016
β1 -0.230 0.001 0.006 1.970 0.617 0.305 0.044 0.025 0.017
σα -0.182 -0.003 0.021 0.327 0.190 0.181 0.017 0.014 0.013
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FIGURE 1. Candidate values for the IBLA parameter estimates of model (1)
computed using algorithm (5), based on one simulated sample. The dashed lines
represent the true parameter values.

5 Numerical example

We use IBLA on the salamander mating data (McCullagh and Nelder,
1989, Ch. 14.5). Three experiments were carried out in order to investigate
whether there are barriers to inter-breeding in the salamanders from two
populations, Rough Butt (R) and Whiteside (W). In our analysis we use
the data from the first experiment, which involved 20 female and 20 male
salamanders. Each female salamander mated with six male salamanders;
three from its population and another three from the other population
under a crossed design. In total, there are 120 observations.
We considered a GLMM with a logistic link function that takes into ac-
count heterogeneity between the female and male salamanders used in the
experiment. The linear predictor of the model is

logit{P (Yij = 1|αi, bj)} = β0 + β1fi + β2mj + β3fimj + αi + bj , (6)
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where Yij = 1 if the mating is successful, and 0 otherwise. The fixed effects
are the population type of the female (fi = 1 if the ith female is a W, 0
otherwise), the population type of the male (mj = 1 if the jth male is a W,
0 otherwise), and their interaction. We assume αi and bj are independently
distributed as N(0, σ2

α) and N(0, σ2
b ), respectively.

Table 3 reports the IBLA estimates of the model parameters. For compar-
ison we also include the estimates obtained by MAL and the (corrected)
penalised quasi-likelihood (C)PQL, as reported in Noh and Lee (2007).
Compared to the MAL estimates, IBLA (with T = 1000) shrinks the re-
gression coefficients towards 0, and results in the largest estimate for σα.

TABLE 3. Estimates for the parameters of model (6).

Method β0 β1 β2 β3 σα σb

MAL 1.33 -2.94 -0.42 3.18 1.25 0.26
PQL 1.16 -2.57 -0.38 2.81 1.19 0.30

CPQL 1.55 -3.50 -0.50 3.82 1.31 0.63
IBLA 1.23 -2.72 -0.38 2.94 1.36 0.28
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Abstract: We propose the extension of the penalized composite link model in
both spatial and temporal aggregations levels. We present a smoothing approach
to account for aggregated counts both in space and time to estimate smooth
incidence maps for the Q-fever outbreak in the Netherlands in 2009.
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1 Introduction

During the period 2007-2009, the Netherlands faced large outbreaks of
Q-fever cases in humans. Q-fever is a disease caused by infection with
Coxiella burnetii, a bacterium that affects humans and other animals. An
epidemiological link was established with dairy goat farms, and to a lesser
extent with dairy sheep farms, that experienced high abortion rates caused
by C. burnetii.
The development of spatial statistical methods on routine surveillance data
is an important tool for Public Health and veterinary authorities on control
measures with respect to Q-fever. To inform decision makers about the
relative importance of different infection sources, Van der Hoek et al. (2012)
developed accurate and high-resolution incidence maps for detection of Q
fever hot spots. A 500×500 m grid was imposed over the area of interest and

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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the number of cases and the population number were counted in each cell.
They analyzed the Q-fever incidents as an spatial point pattern assuming an
inhomogeneous Poisson process where intensity is assumed to vary in space.
In order to estimate a smooth incidence map they proposed a penalized
splines approach using tensor products of B-splines (Currie et al, 2006).
However, usually Public Health authorities do not report the exact geo-
referenced location of the incidence and instead the aggregated counts are
collected and shown in choropleth maps. In this paper, we assume that the
observed (raw) data are provided in aggregated form by municipalities and
by months and in order to propose a methodology to estimate the space-
time latent distribution at disaggregated level. Figure 1 shows an area in
the south of the Netherlands with aggregated counts by municipality and
monthly counts during 2009.
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FIGURE 1. Left: Map of study and Q-fever incidents by municipality in 2009
and Right: monthly aggregated incidents of 2009.

2 Space-time Composite Link Model

We extend the so-called penalized composite link model (PCLM) approach
by Eilers (2007), to deal directly with both spatial and temporal aggre-
gation of the counts and estimate the latent distribution of the incidents
across space and time. Ayma et al. (2016) proposed the extension in the
spatial case where only spatial aggregation is considered. The model is
given by:

µ = Cγ = C exp(Bθ), (1)

where γ represents the mean vector of the latent process at a desirable fine
resolution, C is the composition matrix that describes how these latent
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expectations are combined to yield µ and B is the Tensor product of B-
spline bases B = Bs ⊗Bt, where Bs = B1 ⊗ B2 is the Tensor product of
B-spline bases for longitude and latitude (B1 and B2) and Bt the B-spline
basis function for the time component. The vector of regression coefficients
θ is penalized by an anisotropic penalty matrix with a smoothing parameter
for each dimension, i.e., Pen(λ1, λ2, λt).
In order to consider the spatial and temporal aggregation s simultaneously,
we build the composition matrixC as the Kronecker product of both spatial
and temporal composition matrices, i.e C = Cs ⊗ Ct, where Cs accounts
for the spatial grouping of the counts (i.e. by municipalities) and Ct is the
compositional matrix for the temporal aggregation.
In the spatial dimension, we aim to estimate the spatial mortality trend
at a fine grid, using health data available at coarse geographical units, i.e.,
the area-to-point (ATP) case, reducing the visual bias associated with the
interpretation of choropleth maps caused by the variation in shape and size
of the units. Hence, we impose a regular grid of points into the map and
for Cs, we consider x1 and x2 as the coordinates of the points of the fine
grid, which fall inside of the geographical units vi. Thus, the elements of
the associated (spatial) composition matrix Ct become:

cij =

{
1 if (x1j , x2j) belongs to unit vi
0 otherwise

(2)

for i = 1, ..., n, and j = 1, ...,m. For the temporal counts disaggregation,
suppose m coarse intervals are given and the smooth time trend is to be
estimated on r times narrower intervals, then the temporal composition
matrix Ct is a m × mr matrix with elements equal to zero, except that
cij = 1 if r(i− 1) < j ≤ ri. Hence, for monthly disaggregation, when data
are agreggated in quarters (m = 4 and r = 3), i.e.:

Ct =


1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1

 . (3)

2.1 Model estimation

To estimate the model in (1) , we reformulated it as a mixed model µ = Cγ,
γ = exp(Xβ + Zα), such that the estimation of the fixed and random ef-
fects is done as the iterative solution of the system of equations:[

X̆′WX̆ X̆′WZ̆

Z̆′WX̆ G−1 + Z̆′WZ̆

] [
β
α

]
=

[
X̆′Wz

Z̆′Wz

]
, (4)

with “working” design matrices X̆ and Z̆ are defined as X̆ = W−1CΓX
and Z̆ = W−1CΓZ, respectively, with W = diag(µ) and Γ = diag(γ).
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FIGURE 2. Left: Smoothed latent incidence map for May 2009 and Right:
Smoothed incidence latent temporal trend in 2009 at three chosen locations.

The random effects α have covariance matrix G which depends on the
variance components τ1, τ2 and τt. The working vector is defined as z =
X̆β+ Z̆α+W−1 (y − µ). This yields to a modified version of the standard
mixed model estimators:

β̂ = (X̆′V−1X̆)−1X̆′V−1z, and α̂ = GZ̆′V−1(z − X̆β̂). (5)

Figure 2 shows the smoothed map for Q-fever latent incidences in May
2009 and the smoothed latent time trends at 3 chosen locations (indicated
in the map as A, B and C).

3 Conclusions

We presented a methodology for estimation of latent intensity functions in
both spatial and temporal counts using Penalized composite link models.
The approach takes the computational advantages of recent methods for
variance components estimation (Rodŕıguez-Álvarez et al, 2015) combined
with array methods (Currie et al, 2006). We consider the Q-fever disease
incidents in The Netherlands during 2009. Further extensions include a
simulation study and model performance comparisons of the disaggregated
latent smooth intensity map by means of the PCLM with the space-time
P -spline model where a spatial point pattern is considered. The proposed
approach might help the authorities to document the development of epi-
demics and therefore determine Public Health policies.
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Abstract: Linear mixed effects models are often used to fit data with clustered
structure. The cluster-specific effects can be modelled either via random or fixed
effects. The latter is more attractive when inference for cluster-specific effects
is of interest. However, the fixed effect approach is criticized for producing in-
efficient covariate effect estimates and being unable to include predictors whose
values remain constant within cluster or individual. In this article, we propose a
penalized fixed effects estimation approach that produces a more parsimonious
set of fixed effect estimates and as a result allows for estimating the effects of
cluster-level predictors. We will illustrate this approach using the National Longi-
tudinal Survey of Youth. Theoretical and numerical results regarding the effects
for covariates and the penalized cluster-specific fixed effects will be discussed.

Keywords: Model selection; category combination; penalized least squares

1 Introduction

In this paper, we consider fitting the following model,

Yij = Xijβ + uj + εij for i = 1, . . . , nj , and j = 1, . . . , J (1)

where j indexes the J clusters and there are nj observations within each
cluster indexed by i. Xij is a vector of observed variables, and uj is the so-
called cluster specific effect. Yij is the outcome variable of interest and εij
is the error term. Traditionally, depending upon the inference of interest,
there are two approaches to estimating model (1): treating uj as random
variable with a parametric distribution such as N(µu0 , σ

2
u), or treating uj

as parameters to be estimated (sometimes called econometric “fixed ef-
fects” modelling). When β are the quantities of interest, the random effect
approach is likely preferred as it produces a more efficient estimator of β

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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than the fixed effect approach does. However, the consistency of this esti-
mator depends on the assumption that u and X are independent, which
can often be violated if the level of a predictor depends on the context
(i.e., the cluster). When both the inference about β and uj are of interest,
the uj are often directly estimated using an indicator variable approach.
When the number of clusters is large, this fixed effect approach requires
estimating a much larger number of parameters than the random effect
approach, reducing the precision of estimates. Moreover, if the predictors
X contain a subset of cluster-specific variables, Zj , such that observations
within the same cluster j do not vary on predictors Zj , one runs into an
identification problem when simultaneously estimating uj , j = 1, . . . , J and
the coefficients for Zj . To ameliorate the problems of the fixed effect ap-
proach and to provide a consistent estimator of β when the independence
assumption fails, we propose a penalized fixed effect model that is based
on an assumption that the number of unique values of uj is much smaller
than the number of clusters (i.e., there are natural groups of larger clus-
ters). The proposed approach aims to simultaneously detect the underlying
structure of uj to combine the clusters with the same underlying uj values
and estimate parameters β and unique values of uj .

2 The Proposed Method

Rewrite the fixed effect model in the matrix form

Y = Xβ + Zγ +Du+ ε (2)

where matrix D represents a dummy variable design matrix of the clusters,
in which row Di· takes value 1 in position j when in group j, and 0 else-
where, representing cluster membership, and u = (u1, . . . , uJ). Note that
due to collinearity, γ and u can not be immediately identified under this
model without further constraints.

• Obtain initial values of β, γ and u using a ridge regression or random
effects specification. Order the data according to the ridge regression
estimates of uj , ũj , to obtain the linear transformation matrix D̃ such

that Du = D̃ξ, and ξ = (u(1)−u(2), . . . , u(J−1)−u(J), u(J))
′ such that

ũ(1) < ũ(2) < . . . < ũ(J). We estimate β and ξ using penalized least
squares

Q(β, γ, ξ) =
1

2
(Y −Xβ−Zγ−D̃ξ)′(Y −Xβ−Zγ−D̃ξ)+J

J−1∑
j=1

pλ(|ξj |)

• Obtain penalized least squares estimates of β, γ and ξ: following Fan
and Li (2001), the penalty pλ(|ξj |) can be locally approximated by
the quadratic function

pλ(|ξj |) = pλ(|ξ(0)
j |) +

1

2
p′λ(|ξ(0)

j |)/|ξ
(0)
j |(|ξj |

2 − |ξ(0)
j |

2)
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when the initial value ξ0 6= 0. Let B = (X, D̃); γ = (β, ξ), the estima-
tor of γ can be obtained by solving the following equation iteratively,[

BτB + nΩλ(γ(0))
]
γ = BτY,

where Ωλ(γ(0)) = diag

[
0p,

(
p′λ(|ξ(0)1 |)
|ξ(0)1 |

, . . . ,
p′λ(|ξ(0)J−1|)
|ξ(0)J−1|

)]
. During the

iteration, if ξ̂j is less than an arbitrarily chosen small value, for ex-
ample 0.001 times its estimated standard error, it will be shrunk to
zero, and the corresponding two adjacent groups j and j + 1 will be
combined into the same group. Correspondingly, D̃ will be redefined
based on the new grouping structure.

• Upon convergence, u is recovered through its back transformation
u = D̃−1ξ.

• The standard errors of the proposed estimators can be obtained us-
ing the sandwich variance estimator (Kauermann and Carroll, 2001).
Denote γ̂1, the nonvanishing component of γ̂. The covariance of γ̂1 is
given as follows,

σ̂2
[
Bτ1B1 + nΩ̂λ

]−1

Bτ1B1

[
Bτ1B1 + nΩ̂λ

]−1

,

where σ̂2 is given as

σ̂2 =
SSEλ
dfλ

=
‖Y −Bτ1 γ̂1‖2

tr{B1[Bτ1B1 + nΩλ(γ̂1)]−1Bτ1 }
,

where B1 is the sub-matrix of B corresponding to γ̂1

• The tuning parameter λ can be chosen using cross-validation.

3 Theoretical and Numerical Studies

Theoretical results regarding consistency of the estimator for β and the
sparsity of the clusters are established in a longer paper. Moreover, the
estimators can be shown to have the Oracle property.
We conduct two simulation studies to assess the performance of the pro-
posed penalized fixed effect model (PFE) in comparison with the classic
fixed effect dummy variable regression (FE) and random effect model (RE).
We also compare the results with those based on the ordinary least squares
(OLS) ignoring grouping structure and a fixed effect dummy variable re-
gression under the oracle situation when the true group labels are known
(OFE). In both simulation studies, the data are simulated according to the
following model,

Yij = Xijβ + Zjγ + uj + εij , i = 1, . . . , I, j = 1, . . . J (3)
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where Xij is a n× p1 balanced design matrix, while Z is a n× p2 cluster-

specific covariate matrix, with n = I × J . εij
iid∼ N(0, 1).

Simulation One: First, we compare the performance of the various models
and estimation approaches varying numbers of groups and group sizes when
none of the covariates X and Z are correlated with the group effects uj .
To keep the comparison simple and allow the inclusion of a fixed effects
model, we set p1 = 2 and p2 = 0; X1 and X2 are drawn independently
from uniform distribution on [−2, 2], and they are generated independently
of u. The associated regression coefficients β = (1, 2). We let the number
of groups and the group size vary (k = 12, 48, m = 2, 5, 10, 20, 40). We
further assume that uj only take three distinct values, (−1, 0, 1), in equal
proportions.
According to the simulation set up, there should be three meta-groups af-
ter recombination. To assess the performance of group recombination, for
each member in the recombined group, we calculate the percent of its fel-
low group members that are correctly assigned to the same group. Table
1 summarizes the results in terms of % correct using the penalized fixed
effect approach using three different methods–AIC, BIC and General Cross
Validation(GCV)–for selecting the tuning parameter for the penalty func-
tion methods. We can see that even at very low group size (m = 2), about
60% of observations are correctly assigned. As the group size grows, the
penalized fixed effect method can effectively combine the groups with min-
imal error. The three tuning parameters have similar performance, but it
seems that GCV performs better at lower sample size, while AIC leads
to higher percentage of correctly combined groups at higher sample size.
The PFE approach also produces unbiased estimators for β and compa-
rable standard errors when compared to the nominal standard errors over
simulation repetitions (results not shown).

k=12 k=48
m BIC AIC GCV BIC AIC GCV

2 61.01 60.20 61.36 58.62 60.87 60.32
5 71.70 70.06 74.52 71.91 76.98 74.03

10 84.80 83.38 88.08 85.94 89.98 87.99
20 95.79 95.58 98.14 96.13 97.39 97.66
40 99.46 99.73 99.83 99.86 99.96 100.00

TABLE 1. Percent of clusters correctly grouped under Penalized Fixed Effect
Model

Simulation Two: In this subsection, we simulate the data mimicking a
more realistic longitudinal setup, where there are k = 24 individuals, each
observed at m = 10 different time points. In this context, we assume that
there are two time-variant covariates X, p1 = 2, and three time-variant
covariates Z, p2 = 3. We set the true β = (1, 2) and the true γ = (1, 0.5, 1).
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Each of the X and Z variables are i.i.d. N(0, 1). The individuals are as-
sumed to be in three equal sizes groups, with distinct u values, (−1, 0, 1).
Furthermore, we consider two situations of endogeneity: case one, cor(X1, u) =
0.8); case two cor(X1, u) = cor(Z1, u) = 0.8. Table 2 summarizes the bias
in parameter estimates for each case using different modelling approaches.
To highlight the impact of imposed endogeneity on parameter estimates,
the coefficients of the endogenous covariates are highlighted in bold font.
We find that when some time-varying covariate X1 is specified as endoge-
nous to the group effects u, both OLS and random effect models produced
biased estimates of β1. In contrast, the bias in estimating β is ameliorated
under the PFE approach. On the other hand, when some time-invariant
covariate Z1 is also specified as endogenous to the group effects u, all ap-
proaches produce biased estimator of γ. In terms of group recovery, when
only X is endogenous with respect to u, the performance is comparable to
the independent case as in simulation one, but not when both X and Z are
endogenous.

β1 β2 γ1 γ2 γ3 % correct

Case One
OLS 0.354 0.007 -0.006 -0.004 -0.001 –
RE 0.237 0.009 -0.005 -0.004 0.005 –

PFE-aic 0.135 0.006 0.005 -0.001 -0.004 71.44
PFE-gcv 0.049 0.006 0.001 0.004 -0.000 69.22
PFE-bic 0.072 0.006 -0.003 -0.004 0.001 73.93

OFE 0.012 0.006 0.008 0.000 0.001 –

Case Two
OLS 0.290 0.012 0.162 0.013 0.019 –
RE 0.174 0.013 0.270 0.010 0.017 –

PFE-aic 0.118 0.014 0.323 0.016 0.021 51.56
PFE-gcv 0.030 0.015 0.380 0.018 0.008 50.77
PFE-bic 0.056 0.015 0.362 0.023 0.014 55.23

OFE 0.001 0.012 -0.018 0.019 0.017 –

TABLE 2. Comparison of bias in parameter estimation under different ap-
proaches. The last column shows the percent of individuals are correctly com-
bined

4 Data Analysis

In this section, we illustrate one application of the proposed methodology in
the context of panel data. The dataset used is a subset of the National Lon-
gitudinal Survey of Youth (1980–2000) which consists of 424 subjects who
have been observed at least twice during this period. Following Doughty
(2006), we are interested in evaluating an array of predictors on individual
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earnings. Table 3 shows the parameter estimates of the predictors under
three alternative specifications. One notable feature of this table is that
the coefficients of the random effect model vary greatly from those of the
fixed effect model. We further conducted a Durbin-Watson-Hausman test
and obtained statistical significance, which suggests that there is endo-
geneity from the unobserved variables, and the random effect model would
yield biased parameter estimates. On the other hand the standard errors
of the parameters in the fixed effect model are considerably large due to
the J − 1 = 423 additional parameters. The number of distinct uj reduces
to 54 under the PFE approach, and this leads to a significant reduction of
the standard error of β̂.

Combination
Random Effect Fixed Effect Category

Variable β̂ SE β̂ SE β̂ SE

Age -0.213 0.109 -0.643 0.394 -0.606 0.061
Education (yrs) 1.326 0.127 1.745 0.663 1.747 0.066
To be married 0.603 0.770 -0.449 1.220 -0.258 0.514

Single -1.272 0.653 0.381 1.426 0.123 0.323
Experience (yrs) 0.638 0.269 1.033 0.602 1.013 0.192
Experience SQ -0.003 0.013 -0.001 0.016 -0.001 0.010

Tenure 0.219 0.143 0.100 0.162 0.110 0.108
Tenure SQ -0.004 0.011 -0.005 0.012 -0.007 0.008

Private sector -6.393 1.792 -5.642 1.898 -5.886 1.520
Public sector -7.847 1.935 -5.353 2.139 -5.470 1.588

Hours work per week -0.061 0.021 -0.095 0.025 -0.093 0.016
Union member -0.527 1.864 -2.072 2.025 -1.773 1.520

Union wage limit 1.424 1.785 2.064 1.875 1.835 1.494

σ̂2 40.47 40.50 33.64

model size 14 437 67

TABLE 3. Parameter comparison between three different approaches
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Abstract: We propose a practical yet novel solution to a longstanding statistical
testing problem regarding single subject design. In the clinical setting, we evaluate
whether a new patient behaves the same as one from a healthy population. This
question cannot be answered using the traditional single subject design when only
test subject information is used, nor can it be satisfactorily resolved by comparing
a single-subject’s data with the mean value of a healthy population without
proper assessment of the impact of between and within subject variability. We
use a training set of healthy subjects and a Bayesian framework to generate a
template null distribution of the test statistic of interest. The performance of the
proposed test such as false positive rate and power can be also readily evaluated.
Notably, refitting of models with new subjects is unnecessary, and the single
subject trial designs may differ from those of the healthy population, making
this approach feasible in a tele-medicine situation.

Keywords: Hypothesis testing; multilevel models; Bayesian hierarchical models.

1 Introduction

Making an inference regarding a single subject is an important goal in
clinical and applied settings and in health and behavioral research. Our ex-
ample is a sensitive test for assessing hand function which has implications
for a wide range of neurological conditions, such as stroke, multiple sclerosis
and Parkinson’s disease. Using a non-invasive device to measure muscular
activity, interest focuses on the logarithm of the peak Load Force Rate
(PLFR), a measure of predictive control during a grasping task, which,
according to a study by Lu et al. (2015), increases linearly with the ob-
ject’s weight among healthy subjects. We have available a small training
data set of healthy subjects, and a set of stroke patients in a clinic whose
hand function needs to be assessed on an individual basis for diagnosis and
treatment planning.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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2 Model and Current Approaches

A linear hierarchical model (Laird & Ware, 1982) can be used to model
this type of data. Since the training data and the test subject use different
experimental designs and potentially belong to populations with different
parameters, we outline the model for each group separately.

Yijt = αi + βpopWij + uij + εijt, (2.1) model for training data

Yi′j′t′ = αi′ + βtesti′ Wi′j′ + ui′j′ + εi′j′t′ , (2.2) model for test subject

where Y is the log-PLFR, subscript i and i′ are subject ID, j and j′ are
weight ID and t and t′ are trial ID, for the healthy training and patient
test set separately. Note the design matrix W and the number of trails
are not necessarily the same for the two datasets. According to Lu et al.
(2015), although the level of log-PLFR, αi, can vary across individuals (so

we assume αi
i.i.d.∼ N(a, σ2

α)), the scaling factor βpop is best modeled as a
fixed parameter across the healthy population. We are interested in testing:

H0: The patient i′ has normal predictive control βtesti′ = βpop.

Ha: The patient i′ has suboptimal predictive control βtesti′ < βpop.

To test the hypothesis, one option is to jointly model the two equations
and test the difference in β via interaction terms using a Wald test under
the MLE framework. However due to low sample size, this approach tends
to suffer exaggerated type I error (Lu, Scott & Raghavan, 2016).
Alternatively one can utilize Bayesian inferential tools. For example, we
can consider assigning the following priors and hyper-priors:

p(β(k), σ
2
ε(k)

) ∼ 1

σ2
ε(k)

, p(αi) ∼ N(a(k), σ
2
α(k)

), σ2
α(k)
∼ Inv-Gamma(η(k), ν(k))

where the subscript k denotes whether the parameters are for healthy train-
ing set (k = 1) and for patient test subject (k = 2). Given limited sample
size, to borrow strength we choose to use non-informative priors whenever
possible and constrain the prior parameters to be the same between the two
equations. However, if additional information regarding the test subjects
is available, different prior/hyper-priors can be used. Although inference
based on a Bayesian p-value controls type I error at the desired level, for
each single subject to be tested, one has to recalculate the entire model
using an MCMC algorithm which is time consuming and impractical for
real-time clinical assessment.

3 Proposed Framework For Single Subject Design

In this section we propose an inferential framework for single subject design
that can be conveniently implemented in clinical settings. We first propose
a natural estimator of the scaling factor βtest that is based on a simple
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concept of change in log PLFR per unit change in weight. Assuming a
equally spaced weight design.

β̄i′ =
1∑J−1

k=1 |Ik|

J−1∑
k=1

∑
(j,j′)∈Ik

T∑
t=1

(yi′jt − yi′j′t)
T (wj − wj′)

(3)

where Ik = {(j, j′) : j − j′ = k}, wj or wj′ are weights associated with the
corresponding indices, and T is the number of trials. For two weights, this
is the naive estimator of the difference in PLFR per unit change in weight,
averaged over trials.
Unlike directly comparing the naive estimator in equation (3) with a pre-
determined benchmark value and making a visual judgement about the
status of the test subject, the use of Maximum Likelihood and Bayesian
modeling allow us to compare the test subject with the training data set
taking into account the within-subject and between-subject variability, and
statistical tests are available to assist decision making. However, in order to
make inference regarding a new subject, one needs to refit the entire multi-
level model, which is not convenient in the clinical setting. Moreover since
most of the parametric modelling approach depends on a large sample, the
behavior of the aforementioned methods in hypothesis testing for a single
subject is unknown. The Bayesian approach handles the non-asymptotic
setting more elegantly, but is inherently more difficult to fit without spe-
cialized knowledge of statistical programming languages such as STAN,
BUGS or JAGS. To address these concerns, we propose a novel approach
that allows clinicians to make an informed decision about the test subject’s
status as compared to reference subjects in training data.
We start with the naive estimator β̄test based on (3), which is available in
the clinical setting. The goal is to provide the clinician with a template dis-
tribution of the possible values that we expect to observe given the weight
design and the number of repeated measures used by the test subject. This
template distribution is to be developed in a laboratory where the scien-
tists and statisticians collaborate to design experiments and collect data
based on a carefully controlled set of training subjects, for example, a ran-
dom sample of healthy subjects. and based on it, the clinician can easily
test the hypotheses described previously, regarding patients’ anticipatory
control (H0: βtest = βpop; Ha: βtest < βpop).
The probability of observing any values βtest as extreme as the naive es-
timate β̄test had the test subject behaved the same way as the reference
population can be easily generated using the template distribution. This
probability has the interpretation of a classic p-value in a statistical infer-
ence problem (P(observation as extreme, given the model) under the null).
The clinician can choose a desired level of the test, say 0.05 and reject the
null hypothesis whenever the p-value is less than 0.05. An equivalent alter-
native is to compare the naive estimate β̄test directly with the critical value
C0.05(βtest) derived from the template distribution. If β̄test < C0.05(βtest)
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then reject the null hypothesis. Moreover, the performance (power) of such
decisions can be evaluated ahead of time.
We construct a template distribution for inference based on the proposed
natural estimator using the following algorithm.

1. We fit a Bayesian hierarchical model (2.1) using the training data
set alone to obtain the posterior distribution of the parameters (Θ =
{a, βpop, σ2

α, σ
2
u, σ

2
ε }.

2. Given test-subject design Wnew, we assume, under the null, that
all parameters Θ in model (2.2) are the same. We then generate a
set of posterior predictive outcomes ỹ ∼ MVN(µnew,Ωnew) for the
test subject, where µnew = a + βpopWnew and Ωnew has (possibly
different) compound symmetry structure based on the new design.

3. We draw a large sample of pseudo-subjects from posterior p(ỹ|Θ,Wnew)

and compute ˜̄β using equation (3). Its density approximates the null
distribution of β̄.

Given the linearity and normality assumptions, we can, in addition, easily
generate posterior distributions under alternative hypothetical values of
βtest. Since the generation of such template distributions depends only on
the training data and the design of the test subject, rejection regions defined
with respect to β̄ can be given to the clinician prior to evaluating a new
patient. Similarly, a clinician could be informed of the power associated
with different magnitudes of deviation from the healthy population’s rate.

4 Results

We conducted simulation studies (using clinically determined model param-
eters from the training dataset) comparing the proposed approach to sev-
eral alternatives(Lu, Scott & Raghavan, 2016). In Table 1, δ = βpop−βtest
specifies different alternative situations. We use a training set design de-
scribed subsequently and a hypothetical test subject design as follows: lift-
ing three weights of 250g, 500g and 750g, with five trials each. The error
rates of the proposed inference method are listed in Table one; type I error
rate when δ = 0 and type II error rate when δ 6= 0. They are compared
with the oracle situation where copies of β̄ are directly simulated from the
true distribution. The level of test is set to be 10%. We can see that our
test is highly compatible to the oracle test with a slightly lower type I error
than targeted. We also studied the power of the test under various test sub-
ject designs (varying the number of weights, the distance between different
weights, and the number of trials). As Figure 1 shows, the distance between
different pairs of the weights has much greater impact on the power than
the number of different weights to be lifted.
We applied the proposed method to examine a group of patients with stroke
from a single-subject design perspective. We are interested in understand-
ing each patient’s status as compared to a small group of healthy subjects
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in terms of their ability to predict the fingertip forces to object weight
as measured by the scaling factor for PLFR, in two different experiments.
The data was collected using protocols approved by the Institutional Re-
view Boards of Mount Sinai School of Medicine and New York University
School of Medicine. All participants provided written informed consent as
approved by the IRB. The data is described next.
The training data set consists of data from 10 healthy subjects, each lifting
10 weights, ranging from 250 grams to 750 grams, 50 grams apart. The
order of the weights is randomized to avoid an ordering effects. Each sub-
ject lifts each weight 6 times after one practice trial to learn the weight of
the object. There are 22 test subject patients with stroke who are at vari-
ous stages of post-stroke recovery. Each of the patients participate in two
experiments to assess their fingertip force coordination with the affected
hand. In experiment one, the patients lift weights with affected hand, at
550 and 800 grams each. In two, they lift weights with the affected hand
following a practice lift with unaffected hand, 350 and 600 grams. There are
4 trials after a practice lift. To avoid an ordering effect, the experimental
conditions and weights within each condition are randomized.
Some patients suffer from sensory impairment in the affected hand, hence
they may not be able to learn the weight of the object through practice
using the affected hand alone only (experimental condition one), instead,
such information may be learned by practicing with unaffected hand first
(experimental condition two) (Raghavan, Krakauer, & Gordon, 2006). Ul-
timately, clinicians and researchers need this information to decide whether
the patients should practice the grasping task with the affected hand alone,
or incorporate the unaffected hand into practice protocols.
Using the data from test subjects, we first fit a linear hierarchical model to
test the effects of experimental condition two as compared to condition one.
At level 10%, we found that the results of experimental condition two were
significantly better in terms of the scaling factors. However these results
from the entire group are not particularly useful when the clinician needs
to make a decision and a recommendation of a practice protocol for any
single patient during the course of their rehabilitation.
Using the proposed method, we can assess each subject separately under
each experimental condition. Since most stroke rehabilitation treatment
protocols are non-invasive and low-risk, we choose to tolerate a higher false
positive rate, and set the level of the test to be at 10%. The assessment
results are therefore controlled at an expected 10% false positive rate; the
p-value and the (post hoc) power of each assessment is also estimated and
reported. This table reflects all the information available to the clinician.
Based on the test results, setting α = 0.10, we find that out of 18 sub-
jects who completed both experimental conditions, six subjects switched
status from “ABNORMAL” under condition one to ”NORMAL” under
condition two, one subject remained “ABNORMAL” in both conditions.
Nine subjects remained “NORMAL” and two switched from “NORMAL”
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FIGURE 1. Table (left): The error rates of the proposed test and the oracle test
; Figure (right): The power of the proposed test for different design scenarios.

to “ABNORMAL”. Clinicians can thus use these results to design cus-
tomized training protocols for each patient. Moreover, among those who
receive an initial “NORMAL” assessment in experimental condition one,
the information of post-hoc power and p-value can further inform clinicians
about how effective the test is in detecting “ABNORMAL” status given the
observed effect size, and the minimal false positive rate they have to ac-
cept if they choose to switch a “NORMAL” patient to the “ABNORMAL”
status. Combining the information provided by the observed scaling fac-
tor, the power of the test, the p-value of the test and other patient-specific
conditions, a clinician can make an informed choice to assign a particular
patient to an appropriate training paradigm.
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Abstract: In this work a flexible method is presented to model multi-state pro-
cesses with interval-censored observation times. P -splines are used to model the
progression of aortic diameter in elderly men patients. The method uses a large
fixed number of knots to describe the multi-state process. Penalised likelihood
is used to estimate the parameters of the model. The application to the aor-
tic aneurysm progression (aneur) data provides insightful information about the
rates of diameter aortic progression over time.
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1 Introduction

Abdominal aortic aneurysm is common in elderly men in the UK. The aneur
data consist of measurements of grades of aortic aneurysms, measured by
ultrasound of the diameter of the aorta. The states represent successive
degrees of aneurysm severity, as indicated by the aortic diameter. States
are defined as follows: healthy (1), less than 30 mm; mild (2), 30 − 44
mm; moderate (3), 45 − 54 mm; severe (4), 55 mm and above. Modelling
transition process is important because screening policies are defined w.r.t.
the risk of moving across states. Severe aneurysms are repaired by surgery.
Multi-state models can be used to estimate risk of diameter progression.
They are specified by transition hazards. A four-state progressive model
for diameter aortic progression is illustrated in Figure 1.
The aneur data include transitions moving from a higher state to a lower
one, due to misclassification of state. Jackson et al. (2013) analysed the
aneur data using a hidden multi-state Markov model. This class of models

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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Healthy Mild Moderate Severe

FIGURE 1. Four-state model for aneurysm progression

can estimate transition rates and probabilities of state misclassification.
Hazard transitions were constant over time.
For this application, the aneur data are defined for the history of disease.
This means that the recorded state is the highest state observed. All indi-
viduals are aged 60 at the beginning of the study. For the analysis, age is
shifted by minus 59 years. The hazard transitions are specified by P -splines
basis functions to allow for more flexibility (Eilers and Marxs, 1996). Esti-
mation is undertaken using maximum penalised likelihood.

2 Continuous-time multi-state models

Let {X(t), t > 0} be a continuous-time Markov process which takes values
in the discrete state space S = {1, . . . ,m}. If X(t) is time-homogeneous
transition probabilities are given by

prs(t) = P (X(t) = s|X(0) = r), (1)

and the transition probability matrix is defined by P = (prs), for r, s ∈ S.
The transition hazards are given by

qrs(t) = lim
∆t→0

P (X(t+ ∆t) = s|X(t) = r)

∆t
, (2)

for r 6= s, and can be used to derive the transition probabilities. Let
qrr(t) = −

∑
s 6=r qrs(t) for all r ∈ S and define the transition intensity

matrix by Q = (qrs). Subject to the initial condition P(0) = Im, it is
known that P(t) = exp(tQ); see Kalbfleisch and Lawless (1985). Given
time-dependent hazards, transition probabilities for the likelihood function
are derived using a piecewise-constant approximation.
The hazard model for transition from state r to state s is

qrs(t) = qrs.0(t) exp(βT

rsz), (3)

where z is a covariate vector, βrs is a parameter vector and qrs.0(t) is the
baseline hazard function. Let K be the number of P -splines bases to model
transition from state r to state s. Then,

qrs.0(t) = exp(

K∑
k=1

αrs.kBk(t)). (4)
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3 Penalised log-likelihood function

Suppose there are J transitions to be smoothed and Kj knots for each
transition j = 1, . . . , J . Writing θ for the full set of parameters α and
β, and let L(θ) be the usual log-likelihood for model (3) with baseline
hazard functions parametrised by (4) for interval-censored data. This is an
extension of the log-likelihood in Kalbfleisch and Lawless (1985). Then the
penalised log-likelihood function is

Lp(θ) = L(θ)−
J∑
j=1

λjα
>
j D>j Djαj , (5)

where Dj is the matrix representation of the difference operator for αj =
(αj1, . . . , αjKj )

>.
Estimation is undertaken using the function optim in R. The criteria to
select the optimal set of smoothing parameters λj is the Akaike Information
Criterion (AIC) which is defined in this context by

AIC = −2 · Lp + 2 · df, (6)

where df is the overall model degrees of freedom (Gray, 1992).

4 Application

For the aneur data, consider the four-state progressive model illustrated in
Figure 1. The model for transition from state r to state s is

qrs(t) = exp(

Kj∑
k=1

αrs.kBk(t)), (7)

where j = 1, 2, 3. For transition from state 1 to state 2 there are K1 =
18 cubic P -splines bases. For the other transitions, simpler models are
defined with K2 = K3 = 3 quadratic P -splines bases. The log-likelihood is
penalised for the first transition parameters. Table 1 shows that the optimal
smoothing parameter is λ = 10−3. The fitted hazard from state 1 to state
2 is illustrated in Figure 2. It shows that the risk of moving from state 1
to state 2 increases 15 years after the beginning of the study.

TABLE 1. Values of AIC and df for several values of λ

λ 10−8 10−3 10−2 10−1 2× 10−1 5× 10−1

AIC 1739.254 1736.989 1736.992 1738.684 1739.518 1740.493
df 22.95 20.30 19.36 18.43 18.14 17.78



186 A flexible multi-state model for aneurysm data

0 5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Time (years)

H
az

ar
d 

fu
nc

tio
n

FIGURE 2. Fitted hazard transition from state 1 to state 2

4.1 Prediction

Interpretation of the estimated model is straightforward using transition
probabilities. They can be calculated by using a piecewise-constant approx-
imation. Let P(t1, t2) denote the transition probability matrix for any time
interval (t1, t2]. Given the grid t1, . . . , tn, the transition probability matrix
for the interval (t1, tn] is defined by

P(t1, tn) = P(t1, t2)× . . .×P(tn−1, tn), (8)

where the matrices at the right-hand side are derived using transition inten-
sity matrices Q(t1), . . . ,Q(tn−1). The transition probabilities for 25 years
after the beginning of the study is estimated at

P̂ (t1 = 1, t2 = 26) =


0.253 0.165 0.241 0.341
0.000 0.088 0.147 0.765
0.000 0.000 0.001 0.999
0.000 0.000 0.000 1.000

 , (9)

where t denotes age transformed by subtracting 59 years.
The interpretation of this matrix is as follows. An individual aged 60 in the
healthy state has a probability of 0.341 for developing severe aneurysm 25
years from now and a probability of 0.253 for being still disease-free. For the
same time interval, an individual with mild aneurysm has a probability of
0.765 for moving to severe state and with moderate aneurysm a probability
of 0.999 for developing severe aneurysm.
Figure 3 illustrates estimated probability transitions from state 1 to 2,
from state 1 to 3 and from state 1 to 4. As indicated in Figure 2, the risk
of moving from state 1 to state 2 has a steep increase for individuals aged
75. To a lesser extent, the risks of moving from state 1 to states 3 and also
increase at around the same time.
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FIGURE 3. Transition probability for 1 → 2, 1 → 3 and 1 → 4 conditional on
being in state 1 at age 60

5 Comments

As a next step, we aim to set a large number of P -splines bases to model
each transition. A grid search can be used to select the three smoothing
parameters. However, this method is computationally expensive. A more
efficient alternative is to employ an automatic smoothing parameter selec-
tion (Wood, 2006). We aim to implement this method for the presentation
in the summer.

Acknowledgments: Special Thanks to Conselho Nacional de Desenvolvi-
mento Cient́ıfico e Tecnológico - CNPq. 249308/2013-4.
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Abstract: We develop a Smooth Lasso for sparse, high dimensional, contingency
tables and compare its performance with the usual Lasso and with the now
classical backwards elimination algorithm. In simulation, the usual Lasso had
great difficulty identifying the correct model. Irrespective of the sample size,
it did not succeed in identifying the correct model in the simulation study! By
comparison the smooth Lasso performed better improving with increasing sample
size. The backwards elimination algorithm also performed well and was better
than the Smooth Lasso at small sample sizes. Another potential difficulty is that
Lasso methods do not respect the marginal constraints on hierarchy and so lead
to non-hierarchical models which are unscientific. Furthermore, even when one
can demonstrate, classically, that some effects in the model are inestimable, the
Lasso methods provide penalized estimates. These problems call Lasso methods
into question.

Keywords: False estimation, Lasso, Model selection, Non-hierarchical models,
Smooth Lasso

1 Introduction

Sparse contingency tables arise often in genetic, bioinformatic and database
applications. Then the target is to estimate the dependence structure be-
tween the variables modelled via the interaction terms in a log-linear model.
High dimensionality will force attention on identifying important low-order
interactions - a technical advance since most model selection work relies
only on main effects.
Penalized likelihood attaches a penalty function of the parameters to the
likelihood in order to achieve some purpose such as smoothing (Eilers and
Marx, 1996), or sparsity (Freidman, 2008). Using the LASSO (L1-norm

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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penalty), some of the parameters go to zero allowing a more parsimonious
model to be found. Dahinden (2007) extended the LASSO (Tibrishani,
1996) to contingency tables and log-linear models. However, in the Lasso
the penalty is a non-differentiable function of the parameters thus necessi-
tating specialized optimization algorithms.
We present the smooth LASSO, a penalized likelihood, which does not
require specialized optimization algorithms such as the method of coordi-
nate descent. It uses a convex, parametric, analytic penalty function that
asymptotically approximates the LASSO: minimization is accomplished us-
ing standard Newton-Raphson algorithms and standard errors are avail-
able.

2 Model Formulation

2.1 Log-linear modelling

Assume X1, . . . , Xv correlated binary variables (off=0, on=1) and these
form a v-dimensional contingency table with q = 2v cells. Let Yi be the
random variable indicating the frequency in the ith cell, i = 1, . . . , q and
let µi = E(Yi). We consider a log-linear regression model: log(µ) = ATθ
where A is a (q × p) design matrix of fixed constants with typical element
aij , and θ is a vector with p dimensions measuring the influence of the
effects (constant, main effects and interactions) on the response vector of
counts Y . We use Yates’ design matrix coding scheme whence the columns
of A are orthogonal. Finally, let n =

∑q
i=1 Yi denote the total number

of observations. Estimation is via the log-likelihood, which may be taken
in Poisson form: `(θ |y) ∝

∑q
i=1{yi(aTi θ) − exp(aTi θ)}, as the maximum

likelihood estimators are the same in multinomial and independent Poisson
schemes provided

∑q
i=1 µi = n (Birch 1963). The log-likelihood may be

maximized numerically using iterative proportional fitting or by generating
the design matrix A and using the nlm procedure in the R software package.

2.2 A Smooth LASSO

The penalized log-likelihood is:

`λ(θ) = `(θ)− penλ (1)

where penλ, is the penalty term, λ > 0. For the LASSO penλ = λ
∑p
j=2 |θj |

omitting the intercept term and for the Smooth LASSO penλ = λ
∑p
j=2Qω(θj)

where Qω(θj) = ω log
[
cosh

(
θj
ω

)]
for a constant ω that regulates the ap-

proximation of the function to that of the absolute value function (Salje et
al, 2005). Note that Qω(θj) ∈ C∞, the set of functions that are infinitely



MacKenzie and Conde 191

differentiable, and is convex. Following we define the maximum penalised
likelihood estimator (MPLE) as

θ̂ := arg max
θ ∈Θ

{`(θ)− penλ(θ)} . (2)

We should more properly write θ̂λ, rather than θ̂, but the dependence on
λ will be understood in what follows. For a large λ, all the estimates go to
0 and for λ = 0, there is no constraint, whence θ̂λ=0 is equivalent to the
usual maximum likelihood estimator (MLE).

3 Non-hierarchical model

We digress to make an important methodological point by comparing Yates’
and Binary design matrix coding schemes in a non- hierarchical model using
a well known example. Agresti (2002) gave the following 23 table y′ = (19,
11, 0, 6, 132, 52, 9, 97) of counts classified by: A = defendant’s race (0.
white, 1. black), B = victim’s race (0. white, 1. black) and C = death
penalty (0. yes, 1. no). The contingency table is written in vector notation
in which the leftmost subscript varies fastest. Table 1 shows the result of

TABLE 1. Comparison of Yates’ and binary coding schemes when fitting a
non-hierarchical model comprising A, AB, AC.

Estimated Quantities

Parameters γ̂ β̂ seγ̂ seβ̂ zγ̂ zβ̂

θ0 3.520 3.689 0.067 0.079 52.714 46.670
θA 0.018 −1.825 0.055 0.274 0.332 −6.666
θAB 0.630 0.492 0.067 0.160 9.442 3.074
θAC 0.031 2.171 0.055 0.256 0.554 8.480

`(γ̂) = −161.7495, `(β̂) = −150.65

fitting the non-hierarchical model A, AB, AC with with Yates’ (γ̂) and

Binary (β̂) design matrices. We have the same data, the same model, but
the likelihoods differ and the effects have different interpretations in the two
models. This simple example shows that we should restrict model selection
to hierarchical models.
Even when fitting hierarchical models, only effects in the generating set of
the fitted model are invariant to the choice of design matrix. The applica-
tion of Wald tests to other effects is mistaken. The likelihoods, however,
are invariant. These findings apply to all statistical models with interaction
terms.
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TABLE 2. Simulation: Percentage of correct models identified by three methods.

Estimation Methods
Sample size BE Lasso SL-95

50 62.3 0* 0.1
100 51.6 0 11.8
500 33.0 0 50.1
1000 29.2 0 51.6
∗ The Lasso persistently over fits effects.

4 Lasso Model Selection

4.1 Simulation

We conducted a small simulation study designed to study the percentage of
correct models identified by three algorithms: Backwards Elimination, the
usual Lasso and the Smooth Lasso. For the purposes of illustration we sim-
ulated a 25 contingency table when the main effects model was true. The
number of replications was m = 1000 and we started with the all 2-way in-
teractions design-matrix. For the backwards elimination method we used a
R function written Conde (2011), for the usual Lasso we used the glmnet R
package and for the Smooth Lasso we used another R function, which called
nlm. The tuning parameter λ was estimated by 10 fold cross-validation in
the Lasso functions. The sample sizes studied were: n = 50, 100, 500, 1000.
For the Smooth Lasso one must pick a level of statistical significance, as
with ordinary regression methods (Conde & MacKenzie, 2010). Thus SL-95
corresponds to the 5% level. It will be noticed that the 5% level produces
poor results when the sample size is small, but improves with increasing
sample size, while the classical Backward Elimination algorithm performs
better for smaller sample sizes.

4.2 Obesity Data Analysis

We now present the results of analysing a set of obesity data comprising
8 binary comorbidities measured on n = 5550 patients. The resulting con-
tingency table has 28 cells of which 45.3% are zero cells. We compare the
three algorithms described above using the same fitting methods. Table 3
presents the generating sets defining the final models together with their
AICs. Several interesting features emerge.
First the fitted Lasso-based solution comprised non-hierarchical models.
Each non-hierarchical model was then augmented by adding in effects to
produce a minimum hierarchical model. The models were re-estimated (Ta-
ble 3). Unfortunately, this idea does not always work - often, in sparse
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TABLE 3. Generating sets of models found by Backwards Elimination, LASSO
and Smooth LASSO.

BE LASSO∗ SL-95∗

Model [c1c6, c1c8, c2c3, [c1c2c4, c1c2c7, c1c3c7, [c1c6, c1c7, c1c8,
c2c4, c2c5, c3c4, c1c3c8, c1c5c6, c1c5c7, c2c4, c2c5,c3c4,

c5c6, c1c4, c1c5c8, c1c6c7, c1c6c8, c3c6, c4c5, c4c8,
c4c5c7, c4c6c8, c1c7c8, c2c3c5, c2c3c6, c6c7,c6c8 ]

c6c7c8] c2c3c7, c2c4c7, c2c4c8,
c2c6c8, c3c4c6, c3c4c7,
c3c4c8, c3c5c6, c3c6c8,
c4c5c6, c4c5c7, c4c5c8,
c4c6c7, c4c6c8, c4c7c8,
c5c6c8,c5c7c8, c6c7c8]

AIC 722.687 749.831 1254.699

*Minimal hierarchical model that includes the effects in the support. For the
smooth LASSO, ω = 1.

tables, one finds that minimum hierarchical model contains effects which
are non-estimable, whence one is stuck with a Lasso solution which is non-
hierarchical. Such solutions are unscientific.
A second problem arises with the Lasso methods investigated. If one pre-
processes the table one can identify effects which are inestimable in the
classical paradigm (using a theorem due to the first author). On first notic-
ing this we hoped that if the Lasso was going to produce a sparse model
it would somehow identify the inestimable effects and shrink these to zero.
However this is not the case and we have many examples of the Lasso
and Smooth Lasso solutions producing penalized estimates of inestimable
effects. One might be tempted to regard this as an “advantage”, but this
seems näive. The solution is inconsistent with the classical theory. One pos-
sible explanation is that the penalized likelihoods have a Bayesian inter-
pretation in which the penalty plays the role of a prior. So false estimation
of inestimable effects may just correspond to a value assigned by the prior.
If so, this is yet another reason for discarding such solutions.
Accepting these caveats, we note that: (a) the BE algorithm always pro-
duces a hierarchical model, (b) the BE algorithm is best as judged by the
AIC, (c) it is also fastest, (d) the Lasso is not the sparsest model and (e)
the smooth LASSO is much more parsimonious than the LASSO. These
are consistent findings in our work.
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5 Discussion

There is, apparently, a highly impressive literature on Lasso methods. It is,
however, predicated on model selection based on main effects models. In the
presence of interactions, Lasso methods will often fail to produce scientific
models. It has been argued that group Lasso methods provide one answer
to this problem, but they require multiple tuning parameters, one for each
class of interactions anticipated in the final solution. Accordingly, they are
prohibitively computationally expensive. Other authors have argued for
weak hierarchy (Bien et al, 2013). Their arguments are not compelling
and difficult to implement. Moreover, it is well known that the Lasso lacks
the oracle property and the results in Table 2 confirm this. However, the
results suggest that this may not be the case for the Smooth Lasso, a finding
which requires further investigation. To our knowledge the problem of false
estimation has not previously been reported. All these issues raise serious
questions about the usefulness of Lasso methods for model selection.

Acknowledgments: We acknowledge the help and support of Professor
Victor Kiri, of FVJK consultants, UK. The second author works on the MI-
MOMICS project in the Centre of Biostatistics in Manchester University,
UK
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Abstract: We present the general functional form of causal effect in a large sub-
class of non-Gaussian distributions, called Nonparanormal Causal Effect (NCE).
By describing the causal network as a directed acyclic graph it is a possible to
estimate a class of Markov equivalent systems that describe the underlying causal
interactions consistently, even for non-Gaussian systems. In these systems, causal
effects stop being linear and cannot be described anymore by a single coefficient.
A statistical analysis of the properties of NCE is given together with empirical re-
sults on synthetic and real data, showing that NCE can be effective in estimation
nonparanormal observational data.
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1 Intrudoction

Substantial progress has been made recently on the problem of estimation of
the causal structure and the interventional distribution in the Gaussian case
(Maathuis et al., 2009). Due to the Gaussian structure, they finds that the
causal effect can be described by a set of constants. Harris and Drton (2013)
show that the PC-algorithm has high-dimensional consistency properties
for a broader class of distributions, when standard Pearson-type empirical
correlations are replaced by rank-based measures of correlations in tests of
conditional independence, such as Spearmans rank correlation and Kendalls
rank. The broader class they consider includes continuous distributions
with Gaussian copula, or, in the terminology of Liu et al. (2012), the so-
called “nonparanormal distributions.” In this paper, we assume the use
of the ‘Rank PC’ (RPC) algorithm Harris and Drton (2013), i.e. the PC-
algorithm in the nonparanormal context. Based on the estimated CPDAG,
it is our aim to derive the concept of a causal effect of x on y as a collection
of functions of x and to find an efficient way to estimate them. In Section

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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2 we show the structure of a causal effect of a nonparanormal causal effect
and define an efficient estimator. In Section 3, we evaluate the performance
of our method in a simulation study.We also applied the method to an
Arabidopsis Thaliana circadian clock network in Section 4.

2 NCE for Graphical Models

If (X1, ..., Xp, Y ) has a multivariate Gaussian distribution, it is very simple
to compute the causal effects as

E(Y |do(Xi = x)) = β0 + βix+ βTpaipai, (1)

and, therefore, the intervention effect, or causal effect, becomes

∂

∂x
E[Y |do(Xi = x)]|x=x′i

= βi (2)

Causal effect of Xi on Y with Y /∈ pai is given by the regression coefficient
of Xi in the regression of Y on Xi and pai. Note that if Y ∈ pai, the
causal effect from Xi to Y is, obviously, zero. Our aim is to generalize this
to a wider class of nonparanormal distributions. Liu et al. (2012) define
the nonparanormal distribution, which is identical to a Gaussian copula
distribution. Let f = (fi)i∈V be a set of monotone, univariate functions
and let Σ ∈ RV×V be a positive definite covariance matrix. We say a
p-dimensional random variable X = (X1, ..., Xp)

T has a nonparanormal
distribution,

X ∼ NPN(µ,Σ, f),

if f−1(X) = (f−1
1 (X), . . . , f−1

p (X)) ∼ N(µ,Σ). If X ∼ NPN(µ,Σ, f), then
the univariate marginal distribution for a coordinate, say Xi, can have any
distribution Fi, as we can take fi = F−1

i ◦Φ, where Φ is the standard normal
distribution function. Let consider that (X1, . . . , Xp−1, Y ) ∼ NPN(0,Σ, f).
We will refer to the latent standard normally distributed variables as Zi =
f−1
i (Xi) = Φ−1◦Fi(Xi) and Z = f−1

y (Y ) = Φ−1◦Fy(Y ). We are interested
in the causal effect of Xi on Y for i ∈ (1, . . . , p − 1), that from (2), we
know that for Gaussian data it is very simple to compute the causal effect,
since Gaussianity implies that E(Y |Xi = xi;X−i = x−i) is linear in xi.
Unfortunately, this is no longer true for non-Gaussian random variables. In
Propostion 1 we derive the explicit functional form for the causal effect in
the entire class of nonparanormal distribution.

Proposition 1 Let (X1, . . . , Xp−1, Y ) ∼ NPN(0,Σ, f) and fi (i = 1, . . . , p−
1) is differentiable and fy is infinitely differentiable, then the causal effect
of Xi on Y in causal graph G is given by

CE(Y |Xi = xi) =

∞∑
k=0

b k−1
2 c∑

r=0

k−2r∑
s=1

f (k)
y (z0)

1

k!

(
k − 2r

s

)(
k

2r

)
sβi(−z0 + βizi)

s−1 (3)

× E[(βTpa(i)Zpa(i))
k−2r−s](2r − 1) . . . 3.1× [(1− ρ2)]r(f−1

i )′(xi)
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for every z0 ∈ R, where f
(k)
y is the kth derivative of fy, zi = f−1

i (xi),
Zpa(i) = f−1

pa(i)(Xpa(i)), (βi, βpa(i)) = Σp,(i,pa(i))Σ
−1
(i,pa(i)),(i,pa(i)) and ρ =

Σp,(i,pa(i))Σ
−1
(i,pa(i)),(i,pa(i))Σ(i,pa(i)),p.

If we assume that the underlying function f can be appropriately be de-
scribed by a cubic spline, then in terms of estimation, the terms f (k) can
be set to zero for k ≥ 4. This would reduce the infinite sum in (3) to a
sum of merely four terms. These terms, however, still require some esti-
mates of ρ and the various moments of Zpa(i). By selecting z0 carefully,
it is possible to find good approximations even for lower order Taylor ex-
pansions. In particular, we found that by setting z0 = 0, the mean of the
latent response Z = f (−1)(Y ) the first order Taylor expansion was already
quite appropriate to capture non-linear causal effects for a wide ranging
collection of distributions. Using (3), the first order Taylor expansion of
intervention effect effect for the nonparanormal response is given by

E(Y |do(Xi = xi)) =

∫
E(Y |xi, xpa(i))f(xpa(i)) d(xpa(i))

≈ C + f ′y(0)βif
−1
i (xi) (4)

where C is some constant. From (4), we can obtain a simple plug-in esti-
mator for the causal effect,

CE(Y |Xi = xi) = f ′y(0) βi (f−1
i )′(xi), (5)

where βi is the linear regression coefficient of f−1
y (Y ) on f−1

i (Xi) con-

trolling for the parents f−1
i (Xpa(i)) of i . The latent values are, obviously,

not observed and need to be reconstructed, together with the marginal
distributions of Y and Xi.

3 Simulation studies

In this section, we test our estimation method for Gaussian distributions.
For Gaussian data, the method should find constant causal effects and can
be compared directly with the IDA method Maathuis et al. (2009). We
consider two scenario for Guassian data. A small graph on ten vertices and
a larger graph on fifty vertices with an expected vertex degree of three.
For each n ∈ {100, 1000} and each of the Two types of graphs above, we
sample 100 random graphs from both the small and large graph distri-
butions, and then sample n observations from the graph with the normal
data distribution. For each resulting combination, we run each of the two
considered versions of the RPC-algorithm on a grid of α ’s ranging from
10−10 to 0.5. For each estimated DAG, we compute the causal effects of
each nodes by our estimator and the compare with IDA method. For il-
lustration purposes, Figure1 shows the true graph, the estimated CPDAG
and one of three equivalent DAGs for the p = 10 scenario. Table 1 show
the results for two scenario which we compere our method with IDA.
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FIGURE 1. Plots generated using the R-package pcalg. (a) The true DAG. (b)
The estimated CPDAG using the PC-algorithm, based on a a simulated dataset
with n = 1, 000 replicates and significance cut-off α = 0.01. (c) One of the three
DAGs consistent with CPDAG.

4 Real data analysis

The data consist of transcription profiles for the core clock genes from
the leaves of various genetic variants of Arabidopsis thaliana, measured
with qRTPCR. We consist of two groups of genes: Morning genes, which
including LHY, CCA1, PRR9, and PRR5 whose expression peaks in the
morning. Evening genes, include TOC1, ELF4, ELF3, GI, and PRR3 whose
expression peaks in the evening. The causal effect network among the genes
and functional relation between them are displayed in Figure 2.
There are several directed genes pointing from morning genes to evening
genes and vise-versa. Some of the genes play important roles in the circadian
clock network. In this work, we analysed the causal effect between genes
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TABLE 1. Results of the simulation study for comparison our method(NCE)
and IDA for small graph (p = 10) and large graph(p = 50) when the data are
Guassian.

α = 0.01 α = 0.1

p n IDA NCE IDA NCE

Small graph 10 100 0.101 0.576 0.144 0.554

1000 0.033 0.385 0.029 0.283

Large graph 50 100 3.732 2.515 2.261 3.759

1000 1.175 2.100 0.964 1.378

and apply our method with nongaussian assumption. some important genes
causal effect are in the Figure 2. The morning gene CCA1 found to repress
the evening genes EFL3 and NI. Among the evening genes, EFL4 and TOC1
have more effect on evening and morning genes . The evening gene ELF has
positively effect on CCA1 and also it has negatively effect respect on LHY.
Moreover, the evening genes ELF3, GI, TOC1 are involved in morning
gene PRR and the morning gene LHY has a almost constant effect on the
evening genes ELF4, TOC1, EFL4 . In particular ELF4 interacts positively
effect with NI and CCA1 and negatively with LHY in Figure 2. Many of
the results are consistent with the findings in Grzegorczyk and Husmeier
(2011a,b).

5 Conclusion

In this paper, we have derived an explicit formula for describing a causal
effect for a flexible class of distributions, the nonparanormal. These dis-
tributions are especially useful for observational studies, where normality
assumptions are often not warranted. We also present a simple method,
NCE, to estimate these causal effects. This is effectively a first order ap-
proximation of the general causal effect formula, but it can capture a large
range of non-linear shapes. In a simulation study, we have shown that the
estimation method works well, particularly away from the tails of the data.
We also applied the method to an Arabidopsis Thaliana circadian clock
network. The estimated causal effects all reveal a tendency for the causal
effects to shrink to zero for large values of the cause.

Acknowledgments: The first author is deeply grateful for the travel grant
from the Statistical Modelling Society for travelling to IWSM 2016 in
Rennes, France.



202 NCE: Nonparanormal Causal Effect

−0.4 0.0 0.2 0.4

−
8

−
4

0

 LHY −> CCA1

Cause

C
au

sa
l e

ffe
ct

−0.4 0.0 0.2 0.4

−
5

−
3

−
1

 LHY −> PRR3

Cause

C
au

sa
l e

ffe
ct

−0.4 0.0 0.2 0.4

1
3

 CCA1 −> ELF3

Cause

C
au

sa
l e

ffe
ct

−0.4 0.0 0.2 0.4

−
6

−
3

 ELF4 −> LHY

Cause

C
au

sa
l e

ffe
ct

−0.4 0.0 0.2 0.4

2
6

 ELF4 −> CCA1

Cause
C

au
sa

l e
ffe

ct
−0.4 0.0 0.2 0.4

−
2

0

 ELF3 −> PRR9

Cause

C
au

sa
l e

ffe
ct

−0.4 0.0 0.2 0.4

0
2

4

 GI −> PRR9

Cause

C
au

sa
l e

ffe
ct

−0.4 0.0 0.2 0.4

1
3

5

 GI −> NI

Cause

C
au

sa
l e

ffe
ct

−0.4 0.0 0.2 0.4

0
2

4
6

 PRR3 −> CCA1

Cause

C
au

sa
l e

ffe
ct

FIGURE 2. Causal effects for contemporaneous circadial gene interaction network
in Arabidopsis thaliana. Some genes have functional causal effect and some other
have almost linear causal effect.
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Abstract: This paper addresses the problem of estimating a ridge curve embed-
ded in a three dimensional surface that changes over time. The main challenge is
to exploit the details of surface shape, while maintaining computational feasibil-
ity. A Gaussian Process approach is adopted to define a lip on a human face and
model the change during the performance of an emotion.
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1 Introduction

The statistical analysis of information on shape has been a research topic
of considerable interest since the earliest part of the twentieth century, but
it has developed substantially in the present century especially thanks to
advances in computational tools. Interest in shape analysis of the human
face began because of its applications in biology, medicine and psychology.
This study is applied to the shape of the lips in a three-dimensional facial
image and their variation over the expression of different emotions such as
disgust, fear, anger, happiness, et cetera. To record the expressions, a large
number of pictures of a person producing the emotion are taken with a
stereophotogrammetric camera system, which leads to a set of data in four
dimensions (the three spatial dimensions plus time).

2 Gaussian Process model for a 3D lip curve

A Gaussian Process (GP) is a flexible model which does not approximate
the system by fitting the parameters of a finite set of basis functions, but
rather by explicitly trying to capture the covariance structure of the data.
It is a collection of random variables, any finite number of which have a

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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joint Gaussian distribution (multivariate normal distribution) Rasmussen
and Williams (2006). Suppose a GP r is defined as:

r(s, c) ∼ GP
(
m(s, c), k(s, s′, c, c′)

)
, (1)

a mixed GP for the continuous index (spatial, i.e. the arc-length of the
curve, rescaled to be from 0 to 1), s ∈ [0, 1], and the discrete label (i.e.
coordinate), c ∈ {x, y, z}. This represents each coordinate as a function
of the arc-length: r(s, x) = x(s), r(s, y) = y(s) and r(s, z) = z(s). Let
s = (s1 · · · sn)T for a choice of n values of s. Also let x = (x(s1) · · ·x(sn))T,
y = (y(s1) · · · y(sn))T and z = (z(s1) · · · z(sn))T. Then:

r =
[
x y z

]T ∼ N3n (m,K) , (2)

where m is the mean: m = m(s, c) = (m(s1, x) · · ·m(sn, x)m(s1, y) · · ·
m(sn, y)m(s1, z) · · ·m(sn, z))

T and K is the covariance matrix. Separability
is assumed: k(s, s′, c, c′) = ks(s, s

′) ·kc(c, c′). The space-covariance function
used is the Squared-Exponential (SE), i.e. ks(s, s

′) = σ2 exp
(
− 1

2λ2

(s− s′)2
)
, with hyperparameters: σ2

f , the signal variance and λ, the length-
scale. Then K = Kc ⊗Ks, where Ks represents the covariance matrix for
the n arc-length inputs, with (i, j)th element equal to ks(si, sj). For the
3 × 3 matrix Kc, two hyperparameters were specified: κ1, the correlation
between x and y or z, and κ2, between y and z. The mean is assumed to
be zero and therefore:

r =

x
y
z

 ∼ N3n

0,

 Ks κ1Ks κ1Ks

κ1Ks Ks κ2Ks

κ1Ks κ2Ks Ks

 , (3)

2.1 Likelihood for a lip curve

The distribution in (3) can be factorised as:

x ∼ Nn(0,Ks),

y | x ∼ Nn(κ1x, (1− κ2
1)Ks),

z | x,y ∼ Nn
([
{κ1 − κ1κ2}x +

{
κ2 − κ2

1

}
y
]
/
[
1− κ2

1

]
,[

1−
{
κ2

1 + κ2
2 − 2κ2

1κ2

}
/
{

1− κ2
1

}]
Ks

)
,

(4)

so that the total log-likelihood of the process is: l(θ) = log p(x) + log p(y |
x) + log p(z | x,y), where θ = (σf , λ, κ1, κ2) is the the set of hyperparam-
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eters. From (4):

log p(x) = −n
2

log(2π)− 1

2
log |Ks| −

1

2
xTK−1

s x.

log p(y | x) = −n
2

log(2π)− 1

2
log |Ks| −

n

2
log(1− κ2

1)−

1

2(1− κ2
1)

(y − κ1x)TK−1
s (y− κ1x). (5)

log p(z | x,y) = −n
2

log(2π)− 1

2
log |Ks| −

n

2
log

(
1− κ2

1 + κ2
2 − 2κ2

1κ2

1− κ2
1

)
− (z− z̄)TK−1

s (z− z̄)

2 (1− [κ2
1 + κ2

2 − 2κ2
1κ2] / [1− κ2

1])
,

where z̄ denotes the mean of z | x,y: z̄ = [(κ1−κ1κ2)x+(κ2−κ2
1)y]/[1−κ2

1].

2.2 Prediction for a lip curve

To make predictions for values of the coordinates at a set of test points
s∗ = (s∗1, . . . , s

∗
n∗)

T, from the training points s, the distributions of each
predicted coordinate can be calculated with the same dependences assumed
in Section 2.1. The conditional predictive distributions are:

x∗ | x ∼ N
(
Ks∗sK

−1
s x,Ks∗ −Ks∗sK

−1
s Kss∗

)
.

y∗ | x∗,x,y ∼ N
(
Ks∗sK

−1
s y + κ1[x∗ −Ks∗sK

−1
s x],

[1− κ2
1][Ks∗ −Ks∗sK

−1
s Kss∗ ]

)
.

z∗ | x∗,x,y∗,y, z ∼ N

(
Ks∗sK

−1
s z + (6)

1

1− κ2
1

[
{κ1 − κ1κ2}

{
x∗ −Ks∗sK

−1
s x

}
+{

κ2 − κ2
1

}{
y∗ −Ks∗sK

−1
s y

}]
,[

1− κ2
1 + κ2

2 − 2κ2
1κ2

1− κ2
1

] [
Ks∗ −Ks∗sK

−1
s Kss∗

])
.

Kss∗ denotes the n × n∗ matrix of the covariances evaluated at all pairs
of training and test points and Ks∗s is its transpose. Ks∗ contains the
covariances for the test points.

2.3 Fitting the lip curve model

To study the model, the upper lip of one resting face was estimated.
Each coordinate curve has its mean subtracted so that they are centred
around zero. The lip curve contains 24 highly correlated points (due to
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their smoothness). This causes the covariance matrix Ks (with noise-free
data assumed) to be ill-conditioned, tending to make numerical calculation
of its inverse unstable. The approach opted for was to add some noise to
the model of the observations. This accommodates errors in the observed
facial surface and causes the ratio between the largest and the smallest
eigenvalue to decrease. Since the lip curves are measured in mm, it was
decided that an error of 0.1 mm had little effect on the lip representation
while making optimization viable. Optimal values for the hyperparameters
were found by maximum likelihood. Figure 1 shows the original data points
and 25 predicted points for each coordinate. The optimal hyperparameters
θ = (σf , λ, κ1, κ2) found were: θ = (9.4418, 0.1324, 0.0634, 0.4970), with
respective se: 1.4059, 0.0123, 0.0978, 0.2179. The posterior means are dis-
played with 2 standard deviations bands (shown dotted), which are too
narrow to be properly appreciated.
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FIGURE 1. Observations, posterior means and predicted values for an upper lip.

3 Gaussian Process model for the evolution of one
coordinate

Consider the case where the lip shape varies over the performance of an
emotion (Figure 2). A GP can be specified for each coordinate evolving
through time. The observed values of y, say, depend on two continuous
variables: the space component s and the time component t. The GP can
be then defined as

y(s, t) ∼ GP
(
m(s, t), k(s, s′, t, t′)

)
. (7)

Let s = (s1 · · · sn)T, as in Section 2, t = (t1 · · · tT )T, for a choice of T
values of t, and y = (y(t1) · · ·y(tT ))T, where y(ti) = (y(s1, ti) · · · y(sn, ti))

T

represents the points on the curve at time ti.
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FIGURE 2. Samples of the y coordinate evolving during the performance of
disgust.

Separability is assumed: k(s, s′, t, t′) = ks(s, s
′)·kt(t, t′). The space-covariance

function is the SE. The process is assumed Markovian and hence the
Ornstein-Uhlenbeck (OU) stationary covariance function is used for the
time-covariance, i.e. kt(t, t

′) = exp(− | t − t′ | /µ), with hyperparame-
ter µ, the time scale. The mean is assumed to be zero and therefore the
distribution of one curve and its predecessor can be written as:[

y(t)
y(t− 1)

]
∼ N2n

(
0,

[
Ks κKs

κKs Ks

])
, (8)

where κ = exp(−1/µ), when the time difference between curves is assumed
to be 1.

3.1 Likelihood for the evolution

By the Markov property, given the parameters of the model: p(y) = p(y(1))·∏T
i=2 p(y(i) | y(i − 1)). Then the total log-likelihood of the process is:

l(θ) = log p
(
y(1) | θ

)
+
∑T
i=2 log p

(
y(i) | y(i− 1), θ

)
, where θ = (σf , λ, µ),

using:
y(1) ∼ Nn(0,Ks),

y(t) | y(t− 1) ∼ Nn(κy(t− 1), (1− κ2)Ks).
(9)

3.2 Prediction for the evolution

Along the sequence of curves that capture the emotion, marginal predic-
tions at time q ∈ t can be done at a set of test points s∗. Similarly, pre-
dictions and retrodictions for previous or following time points can be es-
timated, using:

y∗(q) | y ∼ Nn
(
κ1−qKs∗sK

−1
s y(1), κ2(1−q)Ks∗ −Ks∗sK

−1
s Kss∗

)
, q < 1,

y∗(q) | y ∼ Nn
(
Ks∗sK

−1
s y(q),Ks∗ −Ks∗sK

−1
s Kss∗

)
, q ∈ t,

y∗(q) | y ∼ Nn
(
κq−TKs∗sK

−1
s y(T ), κ2(q−T )Ks∗ −Ks∗sK

−1
s Kss∗

)
, q > T.

(10)



208 Modelling the shape of emotions

3.3 Fitting the evolution model

A sequence of uppers lip for the emotion disgust (61 pictures: t = (1 · · · 61)T)
was estimated. Each curve had its mean subtracted. Optimal hyperparame-
ters, θ = (σf , λ, µ), were found by maximum likelihood: θ = (1.7426, 0.0677,
64.4236), with respective se: 0.0751, 0.0009, 5.4307. Figure 3 shows the orig-
inal data points and 25 predicted points for time points: -1 (retrodiction),
2 (marginal prediction) and 63 (prediction). Observations shown for time
points -1 and 63 are, respectively, from the first and last observed curves.
The posterior means are displayed with 2 standard deviations bands (shown
dotted).

FIGURE 3. Observations, posterior means and predicted values.

4 Conclusions and further lines of investigation

The use of shape information, expressed in a continuous and multivariate
scale raises a number of very interesting issues from a methodological per-
spective. Both models to express the three coordinates as single curves in
terms of the arc-length and to express how one coordinate changes over
time interpolate the data well. The notion of a shape evolving in time
will be extended to a phylogenetic setting, where branching points in the
evolution can occur. The aim is to develop statistical methods by which
shape information on organisms can be used to reconstruct a phylogenetic
tree. This raises a number of interesting questions on ways to process both
genetic (discrete) and shape (continuous) information.
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Abstract: We propose analysis, performance and evaluation of different In-
formation retrieval models with a foundational implementation system to the
Healthcare Data Anaytics. In this type of systems, patients post questions to pa-
tient/caregiver support forums. To reduce repetitiveness due to previously asked
questions by other patients with similar conditions, albeit worded differently,
the proposed system will offer patients questions that are semantically similar
to theirs. The problem is re-formulated as an Information Retrieval (IR) prob-
lem and several of the modern implementations of IR models particularly the
probabilistic models are available to tackle this problem. Specifically, we utilized
Lucene which offers a full-text search library by adding search functionality to
our foundational model and system implementation.

Keywords: Statistical Language model; Text Retrieval; Healthcare Informatics.

1 Intruduction

The IEEE International Conference on Healtcare Informatics posed the
following Healthcare Data Analytics Challenge ICHI (2015), and the data
provided was a subset of a large data sets: in a patient/caregiver support
forums, patients submit questions regarding their conditions. Overtime, as
these forums grow, so does the repetitive nature of questions asked by dif-
ferent patients who may have similar conditions but ask questions worded
differently. Specifically, the challenge specification calls for the following.
Given a corpus of question, Q = q1, q2, . . . , qn from a patient support forum,
where each of qi’s representing a question from a patient forum on Type
II Diabetes, design and implement a system that for each incoming query,

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).



210 IR Models in Health informatics

iqj , identify a maximum of three most similar questions from the corpus Q.
Similarity signifies, in this context, questions that are worded differently
but they have the same meaning. Various statistical language models are
used with the focus on the effectiveness rather than the efficiency of the in-
formation retrieval, which measure the ability to find relevant information
accurately. The efficiency, the time taken to return the information, which
is the second important principal of the performance requirement for any
IR model will not be covered in this paper.

2 Statistical Language Models

The main concern here is what documents (d) satisfy user’s information
needed (query q) with enough accuracy. Prior to presenting any model, it
is important to determine the contribution of the term to the document,
which is calculated by using language models based on a given d. Most
of the models are the maximum likelihood estimate of the relative counts
using the following ranking models: Vector Space Model (VSM) Manning
et al. (2008),

f(q, d) =
∑

w∈q⋂ d

c(w, q)c(w, d)log
M + 1

df(w)

where c(w, q) and c(w, d) denote number of words in a query, and count
of words in a document, respectively; M is the total number of documents
in the collection; df(w) denote document frequency. Best Match family
(BM25) by Jones et al. (2000),

f(q, d) =
∑

w∈q⋂ d

c(w, q)
(k + 1)(c(w, d)

c(w, d) + k(1− b+ b |d|avdl )
log

M + 1

df(w)

where b ∈ [0, 1] is part of the normalizer term 1 − b + b |d|avdl ; avdl denotes
average document length.
Language models assume that d is used to generate q, and this can also be
ranked by the following Bayesian probability function; P (d|q) ∝ P (q|d)P (d)
Each document is a list of keywords or terms (t) and can be expressed as
a product of the probability of the terms in the query generated by the
documents: Jelinek-Mercer (JM) Jelinek and Mercer (1980). This model
considers the linear structure of the maximum likelihood of the collection
model using λ to control the influence of each component,

fJM (q, d) =
∑

w∈q⋂ d

c(w, q)log[1 +
1− λ
λ

c(w, d)

|d|p(w|C)
]

where λ ∈ [0, 1]; the probability of unseen word in the collection is propor-
tional to the smoothing term p(w|C). Latent Dirichlet Allocation (LDA)
Blei (2003),
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fDIR(q, d) = [
∑

w∈q⋂ d

c(w, q)log[1 +
c(w, d)

µp(w|C)
]] + nlog

µ

µ+ |d|

where µ ∈ [0,∞), n is a constant.

3 An Outline of Our System Implementation
Approach

There are several approaches to design such system; however, in this spe-
cific instance we have chosen to design and implement the system as an
information retrieval (IR) application. An IR application allows users to
submit ad hoc queries in an attempt to communicate the information need
Manning et al. (2008), such as a medical condition related to, say, Type II
Diabetes or any other medical condition for that matter. As Manning et
al. (2008) state, these types of IR systems commonly have three features
we are interested in:

1. They process large documents collection quickly.

2. They allow for more flexible and sophisticated matching operations.

3. They allow to return the best answer to an information need.

With this in mind, we have formulated the Healthcare Data Analytics chal-
lenge as an IR problem and have opted to use Lucene, Apache Lucene(2011)
release 5.2.1. Lucene is scalable, powerful, and most importantly, open-
source Java-based search library that we built into a prototype software
system to address this challenge. Our design and implementation is a fully
functional prototype that meets all the requirements. IR-based systems
allow users to search for documents, information within a document, or
the metadata about the documents McCandless (2010). The core imple-
mentation, at a minimum, requires an indexing component and a searching
component. Documents have to be indexed first and then users are provided
with another component that allows them to interact with the system to
retrieve information they need. Any type of content can be treated as a
document. Following this argument, each question in the Corpus is treated
as a document with this logical structure: < qid, qtopic−category, qcontent >.
From this point forward, we will use the Question and Document inter-
changeably to mean the same thing in this paper. In our case, qcontent
holds the actual information users would need. The other elements, i.e.
qid and qtopic−category are used internally as metadata to uniquely identify
each question and optionally store its category. The design elements of each
component follow, more or less, the general requirements of any IR-based
application and we follow strictly the guidelines discussed by McCandless
et al. (2010).
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3.1 Indexing Component

This component builds an index for quick access to known fields within a
document (question) such as qid and qtopic−category. It is a process that has
the steps listed below. With the exception of document acquisition step,
Lucene provides all the other functionalities.

• Document Acquisition: A sample questions corpus was provided for
testing. It is one physical document that has many questions in it.
For this step, a parser was implemented to break down and separate
each question into its individual logical structure for the next step.

• Document Building: Lucene concept of a Document which is the
smallest logical and indexable unit that acts as a container with fields.
This is a transformation step from raw content to analyzable logical
content (next step).

• Document Analysis: In this step, all raw text is analyzed and bro-
ken down into tokens. A standard Lucene analyzer breaks down text
into individual words on white space boundaries including punctua-
tion marks, spaces, tabs, newlines, etc. We have also implemented a
custom analyzer that injects synonym of words into the outgoing to-
ken stream during indexing or querying. Lucene provides an interface
to build such a facility for query expansion and we have built it us-
ing WordNet database WordNet(2010). This query expansion facility
using a synonym database allows searching for words that have not
been entered by users. For example, it will treat ’Type 2’, ’Type II’,
’Type two’ the same.

• Document Indexing: In this step each document is added to the index.

3.2 Searching Component

This component provides the necessary steps to allow users submit ques-
tions/queries and render results that match closely to their input. Again
we will use input question and query interchangeably. It is a process that
has these steps.

1. User Interface: We provide two ways for users to enter their ques-
tions/queries. From a file, or from a command line. If entered from a
file, multiple queries can be processed at once.

2. Query Building: In its simplest form, users enter questions in a form-
free format.

3. Search Query: Here the application searches the index and retrieves
the documents that matches the questions the best. Lucene imple-
ments several theoretical scoring models to select from such as Vector
Space Model (VSM), Okapi BM25, Language Models such as Latent
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FIGURE 1. MAP values for the 16 output cases as judged by two human experts.

Dirichlet Allocation, and Jelinek-Mercer model. Lucene implemen-
tors developed the language models smoothing methods described in
Zhai and Lafferty (2001). In our application, you can select any model
as a scoring function to rank the best matching documents through
configuration.

4. Render Results: All top-ranked questions are returned. By default, we
only return at most 3 documents; however, this value can be changed
through configuration.

4 Methodology and Analysis of the Results

We built the system for maximum runtime configuration and best per-
formance. As we have indicated above, we can choose from four different
ranking functions corresponding to VSM, BM25, LDA, and JM language
models. We also have implemented synonymic query expansion during in-
dexing and searching. We noticed, without examining the reason at this
time, that running a query against an index that was generated with syn-
onyms gave us a different outcome from an index that was generated with-
out synonyms. This resulted in generating 16 different outcome data sets.
We used Mean Average Precision (MAP) Manning et al. (2008), a single
metric, as an evaluation criterion to measure the quality across recall lev-
els among all algorithms, i.e. relevant and non-relevant as judged by two
human experts. With the provided sample questions corpus and sample
questions/queries, the best performer was the Jelinek-Mercer model with
no synonymic query expansion but with synonymic index generation as
shown in Fig 1.

5 Conclusion

Healthcare informatics data from the 2015 IEEE International Conference
ICHI (2015) was used, this is a sample of large and complex data sets.
We have implemented a software system based on IR models. We uti-
lized Lucene search library as the underlying technology to realize this
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IR application. The delivered application has an indexing component, and
a searching component. The search component implements four ranking
models to choose from to rank the retrieved documents. We also imple-
mented synonym query expansion during indexing and searching. Sixteen
different outcome data sets were obtained as a result of these model/query
expansion behaviors. A best model was selected during our evaluation of
the sixteen outcome results using Mean Average Precision (MAP) criterion
with the help of human subject matter experts.
This is an active ongoing research, more statistical analysis and graphs will
be presented on the performance, evaluation, preference and comparisons
of these models in the final version of this paper.

Acknowledgments: The authors would like to thank Dr. Kamiel Maloul
and Dr. Jan Slewa for their participation in reviewing the results returned
from our system implementation as human subject matter experts and
quantifying the relevance.
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Abstract: This work develops the gradient test for parameter selection in gen-
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1 Generalised linear models with random effects

Consider a generalised linear model with random effects (GLMwRE) for
a data set containing n independent observations of a response variable,
denoted y = (y1, . . . , yn)>, which by definition has a distribution in the
exponential family, and corresponding observations on p explanatory vari-
ables, denoted x>i = (xi1, . . . , xip)

> for i = 1, . . . , n. The linear predic-
tor for the i-th observation is ηi = x>i β + zi where β = (β1, . . . , βp)

> is
the vector of regression parameters and zi is an unobserved random ef-
fect. The relationship between yi and ηi is given by the conditional mean
µi = E[yi|zi] and the monotonic and differentiable link function, g( · ) such
that µi = g−1(ηi). The zi can be considered as sampled from N (0, σ2),
where σ > 0. An alternative nonparametric approach is to leave the dis-
tribution of zi unspecified. In either case, the distribution of zi may be
approximated by a discrete distribution with finite support. Then the like-
lihood function L∗(β) for the GLMwRE and its approximation L(β) can

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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be written as (Aitkin et al., 2009)

L∗(β) =

n∏
i=1

∫
f(yi|β, φ, zi)$(zi)dzi

≈
n∏
i=1

K∑
k=1

πkf(yi|β, φ, z̃k) =

n∏
i=1

K∑
k=1

πkfik = L(β),

(1)

where f( · ) is the response density, φ is the dispersion parameter, $( · )
is the density of the random effect zi, z̃k are mass points and πk are mass
probabilities. From (1) we have an approximate linear predictor for the k-th
component of the i-th observation as g(µik) = ηik = x>i β+ z̃k where µik =

E[yi|zi = z̃k]. Let
...
y> = (y>,y>, . . . ,y>) be a vector of nK-dimension of

pseudo-observations and the corresponding stacked linear predictor be

g(µ) = η =
...
Xβ +

...
z (2)

where µ> = (µ11, . . . , µn1, . . . , µ1K , . . . , µnK), η> = (η11, . . . , ηn1, . . . , η1K ,
. . . , ηnK),

...
z> = (z̃1, . . . , z̃1, . . . , z̃K , . . . , z̃K) is the n times stacked mass

point vector, and
...
X
>

= (X>, . . . ,X>) is the nK×p pseudo model matrix,
where X = (x1, · · · ,xn). Maximum Likelihood Estimation (MLE) typically
proceeds via the EM algorithm. In the non-parametric approach, πk and zk
are estimated adaptively along with β in the M step and this is known as
non-parametric maximum likelihood (NPML). Tabulated Gaussian quadra-
ture points are used for πk and zk in the case of Gaussian random effects
(the latter being scaled by a parameter σ which needs estimation).

2 The gradient test

The problem considered is that of testing a composite hypothesis H0 : β1 =

β
(0)
1 against a composite alternative H1 : β1 6= β

(0)
1 , where β = (β>1 ,β

>
2 )>,

β1 = (β1, . . . , βq)
> is a q−dimensional parameter of interest with q 6 p,

β2 = (βq+1, . . . , βp)
> is a (p−q)−dimensional nuisance parameter and β

(0)
1

is a specified vector. This induces the partitioning
...
X = (

...
X1,

...
X2). Let

U(β) = ∂ logL(β)/∂β = {U>1 (β1,β2),U>2 (β1,β2)}> = {U>1 ,U>2 }>

be the corresponding partition of the total score function for β. The unre-
stricted MLE of β is β̂ = (β̂>1 , β̂

>
2 )> and the restricted MLE of β2 under

H0 is written β̃2. Functions evaluated at the point β̃> = (β
(0)>
1 , β̃>2 ) will be

distinguished by the addition of a tilde. The gradient statistic ξT for testing

H0 versus H1 has the simple form ξT = Ũ>1 (β̂1 − β(0)
1 ) (Terrell, 2002). In

the context and notation set out earlier, one has Ũ1 =
...
X
>
1 D̃(

...
y−µ̃) and D

is the diagonal matrix with diagonal entries d11, . . . , dn1, . . . , d1K , . . . , dnK
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given by dik = (φωik/Vik)(dµik/dηik) where ωik = πkfik/
∑K
l=1 πlfil and

Vik is the variance function applied to µik. Therefore, the gradient statistic
formula for testing H0 is

ξT = (
...
y − µ̃)>D̃

...
X1(β̂1 − β(0)

1 ). (3)

Based on Terrell’s (2002) results, the distribution of ξT tends under H0 to
the χ2(q) distribution as n increases. Theoretically, the ξT , likelihood-ratio
(LR) ξLR, Wald ξW and Rao ξR statistics are asymptotically equivalent
since they all have the same asymptotic distribution under H0. Nonethe-
less, for finite samples the size and/or power of the tests may differ. Conse-
quently, we provide numerical simulation results to compare their perfor-
mance.

3 Simulation experiment

We report results of Monte Carlo simulations assessing properties of ξT in
finite samples. For this, we establish a model with linear predictor

ηi = β0 + β1x1i + β2i + β3x3i + β4x4i + zi, for i = 1, . . . , n

where x1, x3 and x4 are samples of size n from U(0, 1), F(2, 5) and t(3),
respectively. The parameter values are β0=1, β1=−1, β2i = (i mod 3)− 1
and φ = 1. The random effects zi are samples from N (0, 8−2) for the
Gaussian quadrature fitting and from a discrete distribution which takes K
values from N (0, 8−2) and probabilities from U(0, 1) for the NPML fitting.
The simulation results are based on Normal with identity link and Poisson
and Gamma models with log link function. We took samples of 50, 100,
200 and 400 observations and the number of replications was 10,000 and
K = 3. Our aim is to test H0 : (β3, β4)> = (0, 0)> versus H1 : (β3, β4)> 6=
(0, 0)>. Table 1 shows the null rejection rates of each test for two response
distributions. Overall, the gradient statistic has rejection rates closer to
the nominal levels. We set n = 400, K = 3 and α = 5% for the power
simulations where we computed the rejection rates under the alternative
hypothesis β3 = β4 = δ, for −4 ≤ δ ≤ 4. Figure 1 shows that the power
curves for ξLR and ξT are practically identical and that ξW and ξR have
rather unusual curves, especially for the NPML model.

4 Concluding remarks

The gradient test shows itself as a useful inferential tool in the context
of GLMwRE for several reasons. Firstly, its statistic requires neither the
Fisher information matrix nor its inverse, which is an important simplifi-
cation compared to the Wald and Rao statistics. Secondly according to our
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TABLE 1. Null rejection rates (%).

Gaussian quadrature NPML

n α ξLR ξW ξR ξT ξLR ξW ξR ξT

50 10 13.36 16.10 10.67 11.94 45.97 80.56 3.66 25.00
5 7.12 9.52 5.24 6.06 33.62 76.57 1.91 16.19
1 1.78 2.97 0.93 1.12 15.46 68.85 0.48 5.34

100 10 11.73 12.99 10.51 11.16 24.90 60.19 4.64 17.08
5 6.08 7.11 5.22 5.59 15.78 53.86 2.58 9.83
1 1.25 1.72 0.96 1.08 5.18 43.30 0.74 2.50

N
or

m
a
l

200 10 11.45 12.24 10.62 11.16 15.60 38.70 6.53 13.23
5 5.88 6.49 5.24 5.55 8.58 30.89 3.75 7.09
1 1.21 1.48 1.02 1.08 2.47 19.79 1.23 1.72

400 10 10.47 10.95 9.98 10.32 12.78 23.99 9.35 11.96
5 5.36 5.86 5.04 5.24 6.66 17.20 5.33 6.19
1 1.15 1.29 0.99 1.09 1.53 8.31 1.70 1.25

50 10 10.11 11.92 7.90 10.48 9.36 4.89 16.50 8.91
5 5.01 6.70 3.86 5.46 4.50 2.24 9.64 4.04
1 1.13 1.74 0.83 1.40 0.73 0.42 2.82 0.60

100 10 10.32 12.15 8.56 10.50 9.98 5.31 16.78 9.57
5 5.20 6.51 4.18 5.43 4.97 2.49 10.06 4.75
1 1.15 1.65 0.78 1.34 0.88 0.46 3.28 0.92

P
oi

ss
on

200 10 10.45 11.77 8.53 10.72 10.06 5.59 17.77 9.88
5 4.98 6.20 4.17 5.22 5.05 2.65 10.80 4.88
1 0.95 1.47 0.74 1.12 0.93 0.52 3.25 1.01

400 10 9.68 11.15 8.25 9.82 9.50 5.06 16.52 9.68
5 4.86 5.93 4.23 4.97 4.64 2.13 9.89 4.64
1 0.97 1.41 0.77 1.04 0.87 0.46 2.83 0.93

50 10 13.81 24.13 12.27 15.77 37.47 68.51 7.06 27.24
5 7.73 16.51 6.79 8.29 27.98 62.20 3.53 17.65
1 2.07 7.37 1.77 1.89 13.62 51.27 0.93 6.31

100 10 11.98 18.52 11.62 13.08 22.97 52.04 5.31 18.65
5 6.39 11.66 6.45 6.49 15.10 43.99 2.89 10.68
1 1.54 4.49 2.05 1.39 6.06 31.10 0.90 2.84

G
am

m
a

200 10 10.78 15.65 10.23 11.24 16.48 38.57 5.14 13.79
5 5.33 9.33 5.37 5.49 10.45 29.59 2.87 7.59
1 1.18 2.82 1.64 1.12 3.60 16.98 0.78 1.58

400 10 10.38 13.21 9.80 10.49 14.10 28.43 5.72 12.22
5 5.17 7.85 5.17 5.20 8.04 20.40 3.02 6.00
1 1.08 1.99 1.43 0.91 2.63 10.04 0.77 1.28

simulations, the null rejection rates of the gradient test are much closer to
the true nominal levels than the other three tests for the normal response
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FIGURE 1. Power of the four tests: n = 400, k = 3, α = 5%. Left, for Gaussian
quadrature fitting and right, for NPML fitting.

model and both gradient and LR tests have good rates for the Poisson
response. Finally, our power simulations suggest that the gradient and LR
tests have similar power properties. In sum, this indicates that the gradient
tests should be preferred in the context of GLMwRE.

Acknowledgments: We gratefully acknowledge grant no 9622/13-6 from
CAPES foundation through Brazil’s Science Without Borders Program.
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Abstract: We propose two approaches to analyse measurement errors based on
statistical modelling. The first incorporates distributional regression and aims to
model systematic bias and random error simultaneously via generalized additive
models for location, scale and shape (GAMLSS). The second approach focuses on
quantile regression to evaluate the distribution of z-scores. All proposed models
are illustrated with quality control in sonographic weight estimation, analysing
the effect of the examiner and his experience on the accuracy.
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1 Introduction

The estimated birth weight of the fetus is an important predictive pa-
rameter for neonatal morbidity and mortality. The estimates are based on
the last sonography before birth and incorporate linear models for the dif-
ferent measured biometric parameters. Measurement errors are, however,
inevitable and should therefore be subject to statistical analysis.
We analyse 4613 sonographic weight estimations of 18 examiners start-
ing with the beginning of their ultrasound training (Figure 1). Typically,
quality control in these kind of settings is done with the cumulative summa-
tion (CUSUM) technique (Balsyte et al., 2010) yielding individual learning
curves. We propose alternative approaches based on statistical models that
focus either on the distribution of the estimated birth-weight or analyse the
z-scores of the underlying biometric parameters via quantile regression. Our

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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FIGURE 1. Distribution of birth weight (left) and the accuracy of sonographic
weight estimation (right).

approaches allow to detect the sources of measurement errors while adjust-
ing for confounders and provide the classical statistical inference.
We focus on the influence of the examiner performing the sonographic
assessment and his experience on systematic bias and random errors via
GAMLSS. Additionally, we investigate the performance of the examiner to
detect clinical relevant cases via a comparison of the z-score distribution
of the individual ultrasound parameters to the theoretically expected ones
by quantile regression.

2 Distributional regression for measurement errors

Measurement errors can be separated into systematic bias and random er-
ror. We propose an approach to analyse both, simultaneously, via GAMLSS
(Rigby and Stasinopoulos, 2005). In the easiest case, we assume the out-
come to follow N(µ, σ2). The basic idea is to model both parameters of
this distribution for the measurements ỹ1, ..., ỹn while incorporating the
true values y1, ..., yn in the models:

µ = E(Ỹ |Y,X) = β0µ + β1µy +

p∑
j=1

hµj(xj)

log(σ) = log

(√
Var(Ỹ |Y,X)

)
= β0σ + β1σy +

p∑
j=1

hσj(xj)

Variables that are assumed to have an effect on the accuracy of the mea-
surement as well as possible confounders can be included in the additive
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FIGURE 2. Effect of the individual experience of the examiner (number of scans)
on the expected value (left) and standard deviation (right) of the estimated fetal
weight, representing systematic bias and random error.

predictors via
∑p
j=1 hµj(xj) or

∑p
j=1 hσj(xj), respectively. Examples can

be the measurement device or the examiner. Variables that actually have an
effect on the expected mean µ represent sources of systematic bias, while
variables influencing the variance contribute to the random error of the
measurements (Mayr et al., 2015).
In our analysis, we model the estimated fetal weight Ỹ while adjusting for
the actual birth weight Y and other factors influencing the accuracy (e.g.,
maternal BMI). We are interested in the effect of the examiners and their
evolution when they get more experienced: We therefore included both,
the 18 different examiners as an categorical effect and the absolute number
of scans they had performed before as a non-linear effect via P -splines
(Figure 2).

3 Quantile regression for z-scores of parameters

The accuracy of the estimated fetal weight depends on the accuracy of
the underlying four biometric parameters measured by ultrasound (head
and abdomen circumference, femur length, biparietal diameter). For those
measurements, however, we do not have the true observations but can only
compare them to standardized reference values via z-scores

Z =
YGA − µ(GA)

σ(GA)
,

where µ(GA) and σ(GA) are models for the mean and standard deviation
of parameter Y from a GAMLSS-based reference growth charts (Papa-
georghiou et al., 2014) which depend on gestational age (GA).
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FIGURE 3. Comparing the theoretical 5%, 50% and 95% quantiles (horizontal
dashed lines) with the ones resulting from quantile regression (solid red curves)
for the z-scores of biomeric parameters depending on the number of scans of the
examiner.

For accurate measurements, the distribution of the z-score should on aver-
age follow a standardized normal distribution. In clinical practice, patho-
logical cases are often identified via comparing z-scores to the 5% and 95%
quantiles of N(0, 1) (Salomon et al, 2005). We propose to model these τ -
quantiles

Qτ (Z|X) = β0τ +

p∑
j=1

hτj(xj)

directly via quantile regression (Koenker, 2005) and compare them to the
theoretical ones. Influential subject-specific factors as well as variables that
are assumed to have an effect on the accuracy of the measurement are
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incorporated in
∑p
j=1 hτj(xj).

In our analysis, we are again interested in the categorical effect of the exam-
iner and the number of scans that were performed before. Additionally, we
include the actual birth weight, maternal BMI and GA at the examination
into the model (Figure 3).

4 Model inference

The gamlss package (Rigby and Stasinopoulos, 2005) must be considered
the gold-standard for estimating GAMLSS via penalized maximum likeli-
hood. During the last years, however, alternatives based on gradient boost-
ing (Mayr et al., 2012) and Bayesian inference (Klein et al., 2015) emerged.
Gradient boosting also works for high-dimensional data and can incorpo-
rate variable selection. A limitation of boosting is that standard errors or
confidence intervals for effect estimates can only be computed based on re-
sampling or permutations. Bayesian inference, on the other hand, provides
the advantage of accurate credible intervals without relying on resampling
or asymptotic approximations. In our setting to analyse measurement er-
rors, all three inference schemes could be used to fit the proposed models.
For quantile regression, the standard approach for model inference relies on
linear programming (Koenker, 2005). However, again also Bayesian infer-
ence (Waldmann et al., 2013) and gradient boosting (Fenske et al., 2011)
approaches are available. In our case, we followed the gradient boosting
approach via the R add-on package mboost as it provides a very flexible
implementation to incorporate different types of covariate effects.

5 Results

The examiner and its experience have a significant effect both on system-
atic bias and random error. As presented in Figure 2, the partial effect
of the number of performed scans particularly contributes to the random
error, yielding a higher variation for unexperienced examiners. This effect
can also be observed in the distribution of z-scores for the biometric pa-
rameters (Figure 3). The estimated quantile curves clearly diverge from
the theoretically expected values. However, the range between the quan-
tiles for most parameters decreases with the number of scans, displaying
the learning process.
From a methodological perspective, we think that distributional and quan-
tile regression approaches provide suitable tools for quality control in co-
horts of examiners. In contrast to commonly used descriptive techniques,
the proposed statistical models additionally allow to detect sources of mea-
surement errors while adjusting for confounders. For individual learning
curves, one could incorporate interaction terms between the splines for the
number of scans and the examiners.
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Abstract: Statistical postprocessing models are widely applied to correct en-
sembles of deterministic numerical weather predictions for biases and dispersion
errors and to obtain full predictive probability distributions. We found that the
time series of forecast errors of the raw ensemble forecasts is not necessarily white
noise, but can exhibit substantial autoregressive behavior. Thus, we propose to
fit an AR process to the error series and develop an extension of a state-of-the-art
postprocessing model based on numerical forecasts that are adjusted according to
the respective AR-fit. Applied to temperature forecasts issued by the European
Centre for Medium-Range Weather Forecasts (ECMWF), our proposed model
shows significant improvement over a standard postprocessing model.

Keywords: Statistical postprocessing model; Predictive probability distribution;
Autoregressive process; Spread-adjusted linear pool.

1 Introduction

Ensemble prediction systems aim to reflect and quantify sources of un-
certainty in the deterministic numerical weather prediction (NWP) model
forecasts (Gneiting et al., 2005; Leutbecher and Palmer, 2008).
However, they often fail to capture all sources of uncertainty and thus
exhibit dispersion errors and biases. To deal with these issues, statistical
postprocessing models have been developed and successfully applied over
the last decades. Such a model employs the forecasts given by the individual
ensemble members as covariates in a statistical model, where the response
variable is given by the respective verifying observations. By fitting this
type of model, the ensemble forecasts are corrected in accordance with

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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recent forecast errors and observations. A further advantage is that a full
predictive probability distribution can be obtained (Gneiting and Katzfuss,
2014).
Investigations showed that the time series of the ensemble forecast errors
is not necessarily white noise, but can exhibit substantial autoregressive
behavior. We therefore propose to fit an AR model to the error series and
develop an extended postprocessing model based on ensemble forecasts
adjusted according to the AR-fit. The work presented here is part of a
more extensive study, see Möller and Groß (2016).

2 Modeling autoregressive behaviour

Let {X1(t), . . . , Xm(t)} denote an ensemble of forecasts for a univariate
(normally distributed) weather variable Y (t) at a fixed location. Let η(t)
denote a deterministic forecast of Y (t) with corresponding forecast error

Z(t) := Y (t)− η(t) . (1)

If a one-step-ahead forecast η(t) made at origin t − 1 had been obtained
from an autoregressive-moving average model fit, then the residual series
Z(t) from (1) were a white noise process. Checking for autocorrelation
in Z(t) may then reveal some lack of fit. The unexplained autocorrelation
information in Z(t) can be utilized to improve the forecast. For this, assume
that the series {Z(t)} follows a weakly stationary AR(p) process, i.e.

Z(t)− µ =

p∑
j=1

αj [Z(t− j)− µ] + ε(t) , (2)

where {εt} is white noise. Combining (1) and (2) gives Y (t) = η̃(t) + ε(t),
where

η̃(t) = η(t) + µ+

p∑
j=1

αj [Y (t− j)− η(t− j)− µ] (3)

can be seen as an AR adjusted forecast based on the actual forecast η(t)
and past values Y (t − j) and η(t − j), j = 1, . . . , p. The coefficients µ,
α1, . . . , αp can be obtained by fitting an AR(p) process to the observed
error series {Z(t)} from a training period, where the order p of the process
can automatically be chosen by applying a model selection criterion. This
includes the incidence p = 0, in which case η̃(t) is a simple bias correction
of η(t).

3 Application to ECMWF temperature forecasts

For our case study we employ the m = 50 member ensemble of the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF, see e.g.



Möller and Groß 229

Buizza et al., 2007). We consider 24-h ahead forecasts for 2-m surface tem-
perature in Germany along with the verifying observations at different sta-
tions in the time period ranging from 2010-02-02 to 2011-04-30. Although
there is a total of 518 stations in the full data set, only 383 stations with
complete T = 453 observations were retained.
For each of the 383 stations we compute the series Z(t) = Y (t) − X(t)
of forecast errors of the ensemble mean X, where t ranges over the whole
time period. To check for temporal independence, we apply the Ljung-Box
test (Ljung and Box, 1978) based on lag 1. All 383 computed p-values are
not greater than 0.046 (the largest occurring value), indicating substantial
autocorrelation in the forecast error series for each station.
Figure 1 shows the series of temperature observations together with the
ensemble mean, the corresponding forecast errors, and the autocorrelation
function (ACF) of the series of forecast errors for the randomly chosen
station Ruppertsecken.
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FIGURE 1. Series of temperature and ensemble mean (upper panel), series of
forecast errors (middle panel), and ACF of series of forecast errors (lower panel)
for station Ruppertsecken.
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3.1 Predictive distribution based on autoregressive adjustment

Preliminary investigations showed that the error series belonging to the in-
dividual members exhibit quite different autoregressive behaviour. There-
fore, the procedure performed on the ensemble mean is now applied to
each ensemble member individually, meaning that the parameter estimates
of the AR-fit are separately computed for each member.
To construct a predictive distribution based on the AR-adjusted forecast
ensemble, we follow a similar approach as used for the state-of-the-art
postprocessing method called Ensemble Model Output Statistics (EMOS,
Gneiting et al., 2005). We assume a Gaussian predictive distribution

N (ξ(t), σ2(t)) , (4)

for the weather quantity Y (t) (in our case temperature), given the ensemble
forecasts {X1(t), . . . , Xm(t)}.
In case of EMOS, ξ(t) is a linear combination of the ensemble members
and σ2(t) is a linear function of the ensemble variance. The coefficients are
estimated by minimizing with respect to a proper scoring rule.
To obtain a predictive distribution based on our AR-adjustment of the fore-
cast ensemble (which we call AR-EMOS) we suggest a different estimation
procedure, that is, the following plug-in strategy.
The parameter ξ(t) is now estimated by the mean of the AR adjusted

forecast ensemble X̃(t), with X̃1(t), . . . , X̃m(t) denoting the AR-adjusted
ensemble. The parameter σ2(t) is estimated as mean over all estimated
variances of the individual members η(t) = Xi(t), which in turn are ob-
tained via the moving average representation of the respective Z(t) (see,
e.g., Shumway and Stoffer, 2006).
For both, EMOS and AR-EMOS we proceed by estimating the coefficients
station-wise (local approach).

TABLE 1. Verification statistics averaged over T2 = 338 days and 383 stations.

EMOS AR-EMOS SLP

MAE 2.042 2.036 1.969
CRPS 1.471 1.460 1.407
DSS 3.135 2.908 2.821

As visible in the first two columns of Table 1 our AR-EMOS approach
based on the AR-adjusted ensemble shows slightly improved predictive per-
formance with respect to several verification scores (Wilks, 2011). The re-
spective PIT histograms (Wilks, 2011) presented in Figure 2 indicate that
our proposed method improves calibration properties as well. However, the
histograms also indicate slightly inverse dispersion properties: While the
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EMOS PIT Histogram exhibits a U-shape that is typically for underdis-
persion, the AR-EMOS histogram has a slight hump-shape indicating the
reverse effect, that is a small overdispersion.

EMOS

PIT

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

AR−EMOS

PIT

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

5
1.

0
1.

5
2.

0

SLP Combination

PIT

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

FIGURE 2. Univariate verification rank histogram and PIT histograms over 383
stations and all dates in the verification period.

3.2 Combination of predictive distributions

To neutralize the somewhat contradictory properties of EMOS and AR-
EMOS, we proceed by combining the two distributions with a spread-
adjusted linear pool (SLP, Gneiting and Ranjan, 2013). In our case the
two component CDFs are Gaussian, so that F 0

l (y) = Φ(y/σl), l = 1, 2, and
the SLP combined predictive CDF is

F (y) = w1G1(y) + w2G2(y), Gl(y) = Φ

(
y − µl
σlc

)
, (5)

l = 1, 2, where w1 is nonnegative, w2 = 1− w1, and c is a strictly positive
spread adjustment parameter (Gneiting and Ranjan, 2013).
For an appropriate choice of the SLP parameters when combining EMOS
and AR-EMOS, we investigate a grid of 99 combinations of values for w1

(w2 is fully determined by w1) and c.
For each of the investigated combinations, the average DSS and CRPS over
all 338 days and 383 stations is computed, yielding (for both scores) a min-
imal average for the simple unfocused combination w1 = w2 = 0.5 and
c = 1. As it seems, within the unfocused SLP combination the contradic-
tory dispersion properties of EMOS and AR-EMOS mutually compensate,
yielding a predictive distribution with further improved predictive perfor-
mance and calibration, see the third column in Table 1 and the third panel
in Figure 2.

4 Concluding Remarks

We propose a method that accounts for potential autoregressive structures
in forecast errors of an NWP forecast ensemble. The AR-adjustment is
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straightforward to compute and can be utilized to simply obtain an AR-
adjusted forecast ensemble or to construct different types of predictive dis-
tributions. In our case study we suggest to built an EMOS-like predictive
distribution based on the AR-adjusted forecast ensemble and in a second
step obtain an aggregated predictive distribution that comprises of the
state-of-the-art EMOS predictive distribution and our AR-EMOS variant.
This combined distribution improves dispersion and calibration properties
to a high extend and thus leads to better predictive skill.
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Abstract: In ecological field surveys it is often of interest to estimate the abun-
dance of species. However detection is imperfect and hence it is important to
model these data taking into account the ecological processes and sampling
methodologies. In this context, N-mixture models and extensions are particu-
larly useful, as it is possible to estimate population size and detection probabil-
ities under different ecological assumptions. We apply extensions of this class of
models to estimate the abundance of Pachycrepoideus vindemiae, a parasitoid of
blowflies. We will also develop methods for assessing goodness-of-fit by proposing
different types of residuals for this model class.

Keywords: Ecology of parasitoids; Lucilia sericata, Pachycrepoideus vindemiae;
Population size estimation.

1 Introduction

It is very important in ecological contexts to measure animal abundance
and understand how this abundance changes over time and space. There
are different statistical models that may be used to estimate abundance as
well as site-occupancy. N-mixture models were defined by Royle (2004) and
have been generalised ever since, see Dail and Madsen (2010) and Hostetler
and Chandler (2015). Here we develop and apply extensions of this class
of models to estimate parasitoid abundance given different hosts in a field
survey. So far specific forms of residuals and model diagnostics have not
been proposed and we will develop goodness-of-fit assessment techniques
for these models.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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2 Case-study

Pachycrepoideus vindemiae is a generalist and solitary parasitoid which
normally lays only one egg per host pupa. This species presents facultative
hyperparasitism, i.e., when other parasitoid’s larvae are present in a pupa,
P. vindemiae larvae may kill their competitors.
A field survey was conducted from 2005 to 2007 in three different areas
(rural, urban and forest) in the surroundings of the Brazilian munici-
pality of Botucatu, in São Paulo state. Five different hosts (Lucilia ser-
icata, Chrysomya albiceps, Chrysomya megacephala, Chrysomya putoria,
and Cochliomyia macellaria) were placed in cages to attract the parasitoids.
In each area, three cages were placed and observed on 49 occasions, totaling
3 × 3 × 49 = 441 observations per host. After seven days in the field, the
cages were removed and the number of parasitoids was counted.

3 Methodology

Let nit represent insect counts for site i, i = 1, . . . , R over sampling occasion
t = 1, . . . , T . We are interested in estimating site abundance Ni, however
there is a detection (or capture) probability p which is also unknown. Con-
sidering closed populations (i.e. no migration and constant birth and death
rates), we may assume that nit are independent and identically distributed
as Binomial(Ni, p). The likelihood may be written as

L(N1, . . . , NR, p|n11, . . . , nRT ) =

R∏
i=1

{
T∏
t=1

(
Ni
nit

)
pnit(1− p)Ni−nit

}
. (1)

The approach described by Royle (2004) takes Ni to be independent and
identically distributed latent random variables with density f(Ni; θ), and
marginalising (1) with respect to Ni. Hence the likelihood function of the
N-mixture model may be written as

L(θ, p|n11, . . . , nRT ) =

R∏
i=1

{ ∞∑
Ni=maxt nit

T∏
t=1

(
Ni
nit

)
pnit(1− p)Ni−nitf(Ni; θ)

}
(2)

Sensible choices for the distribution of Ni are the Poisson and negative
binomial models, for example. This model may be extended for zero-inflated
distributions and also to relax the closure assumption, including more latent
variables to model mortality, recruitment and migration (Hostetler and
Chandler, 2015). All analyses were carried out in software R (R Core Team,
2015).
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4 Results and discussion

Exploratory analysis of the data show that abundance is probably higher in
rural areas (see Fig. 1(a)), which may be due to the presence of carcasses
in rural areas that attract the host. Also, detection probability may be
lower in urban areas (see Fig. 1(b)), and this may be due to the fact that
in the variety of chemical compounds in the air make it difficult for the
parasitoids to be attracted by the traps.
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FIGURE 1. (a) Number of collected insects through time for each host×habitat
combination and (b) percentage of zero observations for each host×habitat com-
bination.

We fitted the N-mixture model for the abundance of P. vindemiae with L.
sericata as a host taking the distribution ofNi as Poisson, negative binomial
(NB), and zero-inflated Poisson (ZIP). The best model fit according to the
Akaike Information Criterion (AIC) was the NB mixture including the
effect of area in the detection probability and only an intercept for the
abundance parameter (see Table 1).
Grouping forest and urban areas and fitting the NB model with area as
a covariate for detection probability and only an intercept for abundance,
the likelihood-ratio test indicates that the model including all three levels
of area does not fit the data significantly better than the reduced model
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TABLE 1. Akaike information criterion (AIC) for each N-mixture model fitted
to parasitoid abundance data for host L. sericata (NB = negative binomial; ZIP
= zero-inflated Poisson).

Abundance covariates Detection covariates Ni distribution AIC

× × Poisson 3755.42
× area Poisson 3490.75

area area Poisson 3493.13
× × NB 3519.35
× area NB 3443.36

area area NB 3446.10
× × ZIP 3757.43
× area ZIP 3492.77

area area ZIP 3495.13

(LR=0.80, d.f.=1, p=0.37). We conclude that the detection probability in
rural sites is significantly lower than for forest and urban sites, however
the abundance is statistically the same for different area types (LR=1.25,
d.f.=2, p=0.53).
It is useful to assess goodness-of-fit in this setting so that abundance may
not be over- or underestimated. We propose using half-normal plots with
simulation envelopes of residuals. However, no specific residual form for
these models have yet been proposed other than the ordinary residuals,
which are given by the difference between the observed data and the fitted
values. Producing these plots for the three considered abundance mixtures
and including only an intercept for the abundance model and area as a
detection covariate indicates that the models fail to fit the data well (see
Fig. 2) and hence the inclusion of other covariates and the use of other
model extensions should be explored. This may also indicate that the dis-
tribution of the abundances may not be zero-inflated and that the many
zero observations may be due to low detection probability.
Other subject of ongoing work is the joint modelling of the abundance of
two species using the N-mixture framework, where the abundance of one
species may affect the other’s, such as in a predator-prey or host-parasitoid
system.

Acknowledgments: Special Thanks to FAPESP for funding (proc no.
2014/12903-8).
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FIGURE 2. Half-normal plots with simulated envelopes of ordinary residuals for
the models considering the abundance distribution as (a) Poisson, (b) negative
binomial, and (c) zero-inflated Poisson including area as a detection covariate
and only an intercept for the abundance model.
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Abstract: A method for single imputation of missing values is presented. It
consists in iterative maximization of data depth of each observation with missing
values, and can be used with any properly defined depth. The method is robust,
distribution-free, and applicable to general elliptically symmetric densities. Its
particular case has direct connection to the well know treatments for multivariate
normal model.

Keywords: Missing data; Data depth; Single imputation; Elliptical symmetry.

1 Introduction

The problem of missing values exists since the earliest attempts of exploit-
ing data as a source of knowledge as it lies intrinsically in the process of
obtaining, recording, and preparation of the data itself. The most näıve
treatment consists in dropping rows or columns, depending on the view on
the data, but by deleting the entire row (column) present data is removed
as well. And if a data set contains one or a few missing values in a large
portion of rows, substantial part of data can be missed by this list-wise
deletion. To exploit all the information present in the data set, a statistical
method may be adapted to missing values, but this requires developing such
a one for each estimator and inference of interest. A more universal way is
to impute missing data first, and then apply the statistical method of inter-
est to the completed data set (Little and Rubin, 2002). Lastly, the multiple
imputation has gained a lot of attention: for a data set containing missing

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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values, a number of completed data sets is generated reflecting uncertainty
of the imputation process, which enables not only estimating the value of
interest but also drawing an inference on it (Van Buuren, 2012). Never-
theless, single imputation, i.e. just meaningfully replacing missing values,
is still paid attention in the statistical literature. This can be appropriate
when one needs just to complete a single data set, when no inference is
required, when the applied statistical method is computationally too de-
manding for multiple data sets, or when a few values are missing only but
one seeks an alternative to the list-wise deletion.

2 Proposal

One of the existing approaches to single imputation is to replace a missing
value by its conditional mean, based on a specific joint model. Being of
highest importance, multivariate normal distribution and perturbing this
mechanisms have gained a lot of attention in the imputation literature. In
the present work, we propose a single imputation method able to properly
work for a broader class of elliptically symmetric distributions — a natural
generalization of the multivariate normal model. The suggested technique
is based on the notion of statistical centrality measure — data depth, and
is generic in it. Before presenting the approach in Section 2.2, we refer to
the notion of data depth in Section 2.1.

2.1 Data depth

Consider a point x0 ∈ Rd and a random sample X = {x1, ...,xn} in Rd.
A statistical data depth is a function D(x0|X) : Rd → [0, 1] that de-
scribes how deep, or central the observation x0 is located w.r.t. X. To
be a well behaving depth, D(·|·) should satisfy elementary postulates: be
affine invariant, vanishing at infinity, non-increasing on any ray from the
deepest point (arg maxx0∈Rd D(x0|X)) or even quasi-concave, and upper
semi-continuous; see Mosler (2013) for a recent survey. D(x0|X) provides a
multivariate center-outward ordering, i.e. points closer to the center should
have higher depth, and those more outlying smaller one. During the last
decades, a number of notions of statistical depth function differing in prop-
erties and areas of application have been developed. For shortness and
demonstrative reasons we proceed with the historically first Tukey depth
below.
The Tukey (or halfspace, also location) depth (Tukey, 1975) of x0 w.r.t. X
is defined as the smallest portion of X that can be contained in a closed
halfspace with x0 on its boundary

D(x0|X) =
1

n
min
r∈Sd−1

#{i|x′ir ≥ x′0r, i = 1, ..., n}. (1)
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2.2 Iterative approach

Given (a complete) X, let x ∈ Rd be an observation with missing coordi-
nates, and index its existing entries by xobs and missing with xmiss. De-
noting Dα(X) an α-upper-level set of D(·|X) (or depth-trimmed region),
and denoting interior by int, let

α∗ = inf
α∈(0;1)

{
α | intDα(X) ∩ {y |y ∈ Rd , yobs = xobs} = ∅

}
(2)

be the depth of the region with the smallest depth not touching the missing
affine subspace of x, or exactly touching it when D(·|·) is continuous. We
impute x by

x = ave
(

arg min
y∈Rd ,yobs=xobs

{‖y − z‖ |z ∈ Rd , z ∈ Dα∗(X), ‖}
)
, (3)

with ave being the averaging operator. In this way, discrete depth functions
as well those vanishing immediately beyond the convex hull of data (as, e.g.,
the Tukey depth) are accounted for, also computationally; see Figure 1 for a
data set from http://stat.ethz.ch/Teaching/Datasets/. On the other
hand, as noted above, if D(·|·) is continuous, one can explicitly write

x = arg max
y∈Rd ,yobs=xobs

D(y|X), (4)

i.e. (instead of taking conditional mean) a point of the highest depth con-
ditioned on xobs and on X is taken.
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FIGURE 1. An imputation for the Babies data set using Tukey depth.
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Given a data set with missing entries, we first fill not available data with
starting values (say coordinate wise mean of the existing ones). Then to
each observation with initially missing entries, (3, respectively 4) is applied,
in this way updating all the missing entries. The process is iterated till
convergence.

3 Discussion

The proposed method is general and generic, and can be coupled with
any measure of centrality essentially defining its properties. Thus when
employed with Mahalanobis (1936) depth, it imputes by iterated multiple-
output regression, which coincides exactly with single imputation by iter-
ated regression. Additionally, it can be shown that it yields exactly the
same solution as imputation by the regularized PCA (Josse and Husson,
2012) when assuming rank equal to d − 1 and any admissible variance of
noise. Indeed, after convergence, each missing entry lies in the hyperplane
of regressing on other coordinates; if for some x #miss > 1, then on the
intersection of several such regression hyperplanes, i.e. in general in a mul-
tiple output regression affine subspace of dimension #obs.
With Tukey or projection depth, it yields a distribution-free imputation
scheme, fitting missing value close to the data geometry. It does not exploit
any estimates of location or scatter, avoiding problems with, e.g., mean and
covariance matrix, in a natural way. The approach is robust both in sense
of outliers and heavy-tailed distributions, and for the class of continuous
elliptically symmetric distributions imputed points converge to the points
of the highest conditional density.
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Abstract:
Let Yi be spatially dependent non-normally distributed responses (e. g., disease
prevalence in different regions) which we wish to model in terms of vectors xi of
explanatory variables, using a hierarchical generalized linear model (GLIM) in
which the dependence structure is expressed via a latent Gaussian field Z = {Zi}.
At the exploratory stage, it is common practice to first fit a GLIM assuming inde-
pendence, and then examine the variogram of the residuals Yi − Ŷi to determine
a possible parametric model for the autocorrelation function of Z. This is not ap-
propriate, however, since (unless an identity link function is used) Yi and Zi are
on different scales. We propose here an alternative, the latent scale covariogram,
whose graph reflects the autocorrelation structure of the underlying Gaussian
field. We illustrate its use on a data set involving parasite counts, and obtain
results quite different from those obtained using the variogram.

Keywords: Generalized Linear Model; Spatial Correlation; Variogram.

1 Introduction

When modelling spatially distributed normal responses Yi in terms of vec-
tors xi of explanatory variables, one may fit a linear model assuming inde-
pendence and then use the empirical variogram of the residuals to suggest
an appropriate parametric form for the autocorrelation function. Suppose,
however, that the responses are not normally distributed: for example, a
Poisson or binomial distribution would be more appropriate if Yi measures
disease prevalence in region i. In such cases one may use a hierarchical gen-
eralized linear model (GLIM) in which, conditional on a latent Gaussian

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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field Z = {Zi}, the Yi have independent distributions from the exponen-
tial family, with an appropriate link function connecting their conditional
means with the linear predictors xTi β + Zi. The question is then how to
determine an appropriate model for the autocorrelation function of Z. An
empirical variogram of the residuals from fitting a GLIM without random
effects is no longer appropriate, since (unless the link function is the iden-
tity) it is on the wrong scale. We propose here an alternative, the latent
scale covariogram, whose graph reflects the autocorrelation structure of the
underlying normal field. We illustrate its use on a data set involving par-
asite counts, and obtain results quite different from those obtained using
the variogram.

2 The Latent Scale Covariogram

Consider mi ≥ 1 responses Yij , together with corresponding vectors xij of
explanatory variables, defined at sites si, i = 1, . . . , n; and let dij = ||si−sj ||
denote the distance between the sites. Let Zi ∼ N(0, σ2) be latent variables
defined at si, with isotropic autocorrelation function ρ(dij) ≡ cor(Zi, Zj).
For a link function h(·) and linear predictors ηij = xTijβ, the Yij are as-
sumed independent, conditional upon Z = {Zi}, with (as in McCullagh
and Nelder, 1989)

E(Yij | Zi) = Aijh(ηij + Zi) ≡ m∗ij(Zi)

for known Aij (for example, Poisson offsets), and

var(Yij | Z) = (φ/wij)b(m
∗
ij(Zi)) ≡ v∗ij(Zi) (1)

for known weights wij and an overdispersion parameter φ > 0 which either
equals one or must be estimated. It follows that E(Yij) = E(m∗ij(Zi)) and
var(Yij) = var(m∗ij(Zi)) + E(v∗ij(Zi)). As in Zeger et al (1988), we write

Yij ≈ m∗ij(Zi) + εij
= Aijh(ηij + Zi) + εij

where {εij} and {Zi} are independent, with var(εij) = E(v∗ij(Zi)) ≡ vij .
A Taylor approximation then gives

Yij ≈ Aijh(ηij) + Aijh
′(ηij)Zi + εij

≡ µij + aijZi + εij .

Averaging on j, we obtain Ȳi· ≈ µ̄i· + āi·Zi + ε̄i·, so that

(Ȳi· − µ̄i·)/āi· ≈ Zi + ε̄i·/āi· (2)
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where Zi and ε̄i· are independent. If µ̂ij and âij are computed from prelim-
inary estimates η̂ij , we define the latent scale covariogram to be a graph of
(a binned version of)

(Ȳi· − ¯̂µi·)(Ȳj· − ¯̂µj·)
¯̂ai·¯̂aj·

vs ‖si − sj‖. (3)

It follows from (2) that this should approximate a graph of cov(Zi, Zj) vs
‖si − sj‖. ,
Observe (suppose for simplicity mi ≡ 1) that fitting a GLIM assuming
independence and then normalizing the Yi by their estimated standard
deviations gives the Pearson residuals (Yi−µ̂i)/

√
v̂i, where v̂i = (φ/wi)b(µ̂i)

for the variance function b(·) given in (1). The estimated left-hand side of
(2) is also a normalized residual, but with a different normalizing constant
âi. Table 1 shows the values of

√
vi and ai for several GLIM distributions

and link functions. Note that in some cases, the LSC normalizes by an
estimate of the variance, not of the standard deviation.

TABLE 1. Normalizing parameter ai and standard deviation
√
vi

.

Distribution Link µi ai
√
vi

Ber(pi) logit pi = eηi/(1 + eηi) pi(1− pi) [pi(1− pi)]1/2
Ber(pi) probit pi = Φ(ηi) φ(ηi) [pi(1− pi)]1/2

Poisson(λi) log λi = eηi λi λ
1/2
i

Neg-bin(µ, θ) log µi = eηi µi [µi + µ2
i /θ]

1/2

3 An Example

These data (Bockarie et al, 1998) are from a drug trial concerning parasite
counts in hamlets at n = 147 sites {si} in a rural area of the East Sepic
Province of Papua, New Guinea. For j = 1, . . . ,mi individuals in hamlet i
the parasite count Yij was measured, together with the explanatory vari-
ables sexij (= 0/1 for female/male) and ageij (in years); this resulted in a
total of N = m1 + · · · + mn = 2219 observations. Alexander et al (2000)
modeled the data using a negative binomial distribution. Letting xtij =
(1, sexij , ageij) and denoting by Z a vector of latent hamlet effects,
they assumed that Z ∼ N(0,Σ) where Σ = ((1/φ) exp(−‖si − sj‖/α)),
and that Yij | Z ∼ind NB(µij , θ) with µij = exp(ηij + Zi) for ηij =
xij

tβ. Here, the negative-binomial distribution is parameterized so that
var(Yij | Z) = µij(1+µij/θ). Before fitting a model, they examined the form
of the covariance structure using a variogram of the hamlet-level averages
Ȳi· (their Figure 3a); this indicated spatial correlation up to approximately
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6 km, and then leveled out. After fitting the spatial model, a variogram of
the averaged Pearson residuals (their Figure 3b) was essentially constant,
indicating no remaining spatial correlation or trend; moreover, the poste-
rior median and mean of α (1.998 and 2.414) in fact correspond to ranges
of 6.0 and 7.2 km.
However, using the LSC instead of the variogram gives a very different pic-
ture. The LSC of the hamlet-level averaged residuals from a model without
spatial effects (Figure 1a) decreases to zero at approximately 4 km, but then
becomes negative and continues to decrease, suggesting a spatial trend. A
map of these residuals (Figure 1b) indicates that this apparent trend may
be due to a difference between the eastern and western parts of the region;
cf. the discussion at the bottom of p. 458 in Alexander et al, (2000). We
therefore added a binary variable east to indicate whether or not the set-
tlement is in the east (longitude > 8 km in Figure 1). Table 2 shows the
results of the two fits. We see that the estimated coefficient of east is posi-
tive, as expected from Figure 1a, and extremely significant; moreover, there
is a 30% decrease in the coefficient of age. The map of the residuals from
this model (Figure 1d) is improved, and the corresponding LSC (Figure 1c)
now levels out and indicates an autocorrelation range of approximately 2
km. Note (Alexander (2000), p. 458) that the maximum distance flown by
the main mosquito vector is 1.8 km.
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FIGURE 1. LSC (a) and map (b) of residuals from a negative binomial fit to the
parasite data, without a regional effect; LSC (c) and map (d) of residuals from a
fit including a regional effect.

In summary, an exploratory analysis using a variogram of the Pearson
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TABLE 2. Coefficient estimates for non-spatial models.

Without regional effects
Coefficient Estimate Std. Error z value Pr(> |z|)
(Intercept) 5.781 0.158 36.66 < 2e-16
sex 0.153 0.147 1.04 0.299
age 0.028 0.004 6.49 8.82e-11

AIC: 20245
With regional effects
Coefficient Estimate Std. Error z value Pr(> |z|)
(Intercept) 5.108 0.163 31.25 < 2e-16
east 1.232 0.171 7.20 6.24e-13
sex 0.155 0.145 1.07 0.286
age 0.037 0.004 8.49 < 2e-16

AIC: 20189

residuals leads to a model with a 6 km range for the autocorrelation function
and does not indicate a trend. However, using the LSC suggests a model
with settlement clustering effects, together with a much shorter range for
the autocorrelation function.
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1 Introduction

In regression type models variables collected as potential covariates are
often categorical. The usual strategy of modelling the effect of a categor-
ical covariate by defining dummy variables for level effects can lead to a
high-dimensional vector of regression coefficients. A sparse representation
of the model can be achieved by fusing category levels with essentially
the same effect on the response and/or by removing variables without any
effect. To achieve effect fusion we propose a prior distribution on the re-
gression coefficients, which is specified as a finite location mixture of spiky
components and encourages sparsity by eventually emptying some of these
components. As an example we analyse the annual personal income in
Austria as a function of social and demographic characteristics using data
from the Survey on Income and Living Conditions (SILC) in 2010. As pos-
sible covariates in our analysis we use age, gender, federal state of

residence, citizenship and level of education.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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2 Model Specification

We consider a standard linear regression model with Normal response y
and p categorical covariates with levels 0, ..., cj where j = 1, ..., p. We de-
fine 0 as the reference category and denote by Xjh the dummy variable
corresponding to the h-th level of covariate j. Hence, the regression model
is given as

y = β0 +

p∑
j=1

cj∑
h=1

Xjhβjh + ε (1)

where βjh, h = 1, . . . , cj is the effect of the h-th level of covariate j with
respect to the reference category and ε ∼ N (0, σ2

ε ) is the error term.

3 Prior Specification and Posterior Inference

Our goal is to specify a prior which allows to identify clusters of level specific
effects of each covariate. As finite mixture distributions are a convenient
tool to achieve model based clustering we will use a mixture prior on the
level effects. Generally, we specify the prior on the model parameters as

p(β, σ2
ε ) = p(β)p(σ2

ε )

and assume that the vectors of regression effects are independent between
covariates. Hence, the prior on the regression coefficients has the structure

p(β0,β1, ...,βp) = p(β0)

p∏
j=1

p(βj).

Elements of βj are assumed independent conditionally on hyper-parameters
and the prior of the level effects βjh is specified as a finite mixture of Normal
distributions. In contrast to the popular spike and slab priors, which are
employed for selection of regression effects we use a location mixture of more
than two components. Each of these components has a small variance, i.e.
all components are spiky. Further, to allow identification of practically zero
effects, one of the mixture components has its mean at zero. The proposed
prior is specified hierarchically as

p(βjh) =

Lj∑
l=0

ηjlfN (βjh|µjl, ψj)

ηj ∼ DirLj+1(e0)

µj0 = 0

µjl ∼ N (mj0,Mj0) for l = 1, ..., Lj
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where Lj + 1 is the number of mixture components for covariate j and
DirLj+1(e0) is a symmetric Dirichlet distribution of dimension Lj + 1 with
parameter e0. Lj has to be chosen reasonably large to capture all relevant
differences of the level effects, but not larger than cj . We use Lj = cj in
our application in Section 4.
As shown in Rousseau and Mengersen (2011) and Malsiner-Walli et al.
(2016) empty components of a mixture distribution can be encouraged
by setting the parameters of the Dirichlet prior e0 to small values, e.g.
e0 = 0.01.
The parameters of the Normal mixture components are specified by tak-
ing an empirical approach based on the OLS estimates β̂ of the regression
effects. For the specification of the covariate specific spike variances ψj we
use the variance decomposition of a mixture model where the total het-
erogeneity can be decomposed into the variation of the component means
around the global mean and the heterogeneity within a mixture component
(Frühwirth-Schnatter, 2006)

Var(βjh) =

Lj∑
l=0

ηjl(µjl − µ̄j)2 +

Lj∑
l=0

ηjlψj ,

where µ̄j =
∑Lj
l=0 ηjlµjl. We suggest to set the covariate specific variances

to ψj = 0.005Vj where Vj is the variation of the estimated level effects

β̂j1, . . . , β̂jcj ,

Vj =
1

cj − 1

cj∑
h=1

(β̂jh − β̄j)2

and β̄j = 1
cj

∑cj
h=1 β̂jh is their mean. With decreasing variance ψj the

mixture components become more spiky, which suggests that ψj can control
the size of the selected model.
As hyperprior on the component means µjl we use a Normal distribu-

tion and choose its parameters also based on β̂j . We set the mean mj0 of
the Normal hyperpriors to β̄j and the variance Mj0 to the squared range(

maxh β̂jh −minh β̂jh
)2

.
Figure 1 shows the prior distributions for the level effects of two covariates
in our application, citizenship and education level. For each covariate
one mixture component is centred at zero and the others at their starting
values β̂jh. The overlapping of components suggests that some level effects
could be allocated to the same cluster.
Finally, for the intercept β0 we specify a Normal prior with large variance
ψ0 = 10, 000 and for the error variance σ2

ε an inverse Gamma prior σ2
ε ∼

G−1(s0, S0) with s0 = S0 = 0.
Bayesian inference is accomplished by sampling from the posterior distribu-
tion using MCMC methods. Sampling from mixture distributions is more
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FIGURE 1. Finite mixture prior for level effects of covariate citizenship

(left plot) and education level (right plot). One component is centred at zero
(dashed), the others at β̂jh, h = 1, . . . cj .

convenient using data augmentation by specifying latent allocation vari-
ables which indicate the component an object is assigned to. We therefore
introduce a set of latent allocation variables Sj = (Sj1, ..., Sjcj ) for each
covariate j. Sjh takes values in {0, 1, ..., Lj} and indicates the component
to which the level specific effect βjh is assigned. Posterior inference for the
parameters Θ = (β, σ2

ε ,µ,η,S) can be accomplished by sampling from the
posterior distribution

p(Θ|y) ∝ p(Θ)p(y|Θ)

where p(y|Θ) is the likelihood of the regression model given in equation
(1).
Sampling β from the corresponding multivariate posterior distribution con-
ditional on Sj = (Sj1, ..., Sjcj ) is straightforward as conditional on Sjh = l
the prior distribution for βjh is the Normal distribution

p(βjh|Sjh = l) ∼ N (µjl, ψj).

4 Analysis of EU-SILC Data

We employ the sparse finite mixture prior described above in a linear re-
gression analysis using Austrian EU-SILC (SILC = Survey on Income and
Living Conditions) data from 2010. To model the log-transformed annual
income of individuals we take into account only full-time employees (with
a minimum annual income of EUR 2,000). As potential covariates we use
age (linear and quadratic term), gender, federal state, citizenship

and highest education achieved. After removing all data with missing
values 3,909 observations remain in the data set.
We first fit a full model with regression effects for each covariate level
using a flat prior. Posterior means of the regression coefficients are given
in Table 1 (left).
To select a model with eventually fused categories we set the hyper -
parameters as described in Section 3 and run MCMC for 50,000 iterations
after a burn-in of 10,000.
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As final model we select the model visited most often during MCMC and
refit it with a flat prior on the regression effects. In this model the level ef-
fects of covariates federal state, citizenship and education level are
fused to three, two and four effects, respectively. Posterior means of the re-
gression effects are given in Table 1 (right) and Figure 2 compares posterior
means and 95 % HPD intervals of the effects for covariates citizenship

and education level in the full model and the refit of the selected model.
Though none of the covariates is completely excluded from the model the
number of regression coefficients (including intercept) is reduced from 26
to 10.
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FIGURE 2. Posterior means and 95 % HPD intervals of covariate citizenship

(upper panel) and education level (lower panel) for the full model (left) and
the refitted selected model (right) under a flat prior.

The posterior mean of the error variance σ̂2 = 0.181 is negligibly higher
compared to the full model (σ̂2 = 0.180), but BIC = 4493.06 is considerably
smaller (full model: BIC = 4583.04).

Acknowledgments: We gratefully acknowledge financial support by the
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modelling for categorical predictors’.
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TABLE 1. Posterior means for the full and the selected model

variable full model selected model

intercept 9.05 9.05
age (linear term) 0.62 0.62
age (squared term) -0.43 -0.42
female -0.22 -0.21
federal state (base: Upper Austria)

Carinthia -0.08 -0.06
Lower Austria -0.03 -0.06
Burgenland -0.08 -0.06
Salzburg -0.04 -0.06
Styria -0.10 -0.06
Tyrol -0.05 -0.06
Vorarlberg 0.09 0.09
Vienna -0.03 -0.06

citizenship (base: Austria)
EU15/EFTA -0.03 0.00
New EU10 -0.17 -0.18
Rest of Yugoslavia without Slovenia -0.21 -0.18
Turkey -0.15 -0.18
Others -0.23 -0.18

Highest education achieved
(base: max. secondary school degree)

apprenticeship, trainee 0.26 0.28
master craftman’s diploma 0.26 0.28
nurse’s training school 0.42 0.51
other vocational school (medium level) 0.36 0.28
academic secondary school (upper level) 0.49 0.51
college for higher vocational education 0.53 0.51
vocational school for apprentices 0.45 0.51
university, academy, FH: first degree 0.65 0.67
university: doctoral studies 0.77 0.67
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1 Introduction

In multivariate regression analysis the mean vector is usually modelled
assuming a constant covariance matrix for the observations. However, this
assumption is often violated and understanding how the variance depends
on the covariates may be of interest. In recent years, some approaches
have been suggested to model simultaneously the mean and covariance
structure. Specifically, Hoff and Niu (2012) proposed the rank-1 regression
model Yi = Axi+γiBxi+εi where A is a matrix of regression coefficients,
γi ∼ N (0, 1) is a latent variable that allows for extra-variation in the

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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response and B is a real matrix of factor loadings. The implied marginal
covariance matrix for the response is a quadratic function of the covariates,
i.e., Σ(xi) = Ψ + Bxix

T
i BT , where Ψ is the covariance matrix of εi.

Li et al. (2013) proposed an extension of the covariance regression model
suggested by Hoff and Niu (2012) to hierarchical data. The authors mod-
elled three burnout outcomes in the European RN4CAST project (Sermeus
et al., 2011) where nurses are clustered in nursing units and hospitals. Li
et al. (2013) included a random intercept in the mean as well as a random
intercept in the variance structure assuming independence between them.
However, it could be the case that nursing units (or hospitals) with a high
burnout level present a smaller variance for the outcomes, since burnout
can be transmittable and all nurses might suffer homogeneously of psycho-
logical stress. Thus, a model that allows for correlation between the random
effect in the mean and the variance structures appears necessary.

2 The RN4CAST dataset

The registered nurse forecasting (RN4CAST) project is a funded nurse
workforce study conducted from 2009 to 2011 in 12 countries of Europe,
see Sermeus et al. (2011) for details. It is of particular interest to identify
the variables that have an effect on burnout of nurses in Belgium whilst
explaining the covariance structure of the data based on the available co-
variates.
Burnout was measured using 22 items that were summarized in three vari-
ables: emotional exhaustion (EE), depersonalization (DP) and reduced per-
sonal accomplishment (PA). Several covariates were considered at hospital,
nursing unit and nurse levels. There are in total 2492 female nurses in Bel-
gium with full information for the analysis, grouped in 269 nursing units
and 66 hospitals.

3 The correlated random effects model

The model is introduced here for a two-level structure assuming that the
mean model and covariance structure depend on the same covariates. Let
Yij ∈ Rp be the multivariate response variable for subject j in cluster i,
xij ∈ Rq be the vector of explanatory variables and B the factor loadings
matrix of size p× q. The proposed model is

Yij = µxij + Ui + γij [Bxij + U∗i ] + εij , i = 1, . . . , I, j = 1, . . . , ni,

where µxij = Axij is the expectation E(Yij |xij). The latent factor γij
has a standard normal distribution while the random error εij follows a
multivariate normal distribution Np(0,Ψ). Similarly, it is assumed that
Ui ∼ Np(0,Ψu) and U∗i ∼ Np(0,Ψu∗). The random effect in the mean is
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allowed to be correlated with the random effect in the variance structure
as Cov(Ui,U

∗
i ) = E(UiU

∗T
i ) = Ψuu∗ .

It is also assumed that the random error, the latent factor and the random
effects joint vector Ub

i = (Ui,U
∗
i ) are mutually independent. The distribu-

tion of the joint vector is Ub
i ∼ N2p(0,Ψ

b). This model is an extension of
the model proposed by Li et al. (2013) which assumes Ψuu∗ = 0.
The implied covariance matrix for Yij given the model is a quadratic func-
tion of the explanatory variables, i.e.,

Σ(xij) = Ψ + Ψu + Ψu∗ + Bxijx
T
ijB

T . (1)

Hence, the model has two possible solutions since Σ(xij) is the same given
γ, B, U∗ and given −γ, −B and −U∗. Both alternatives lead to the same
interpretation of the parameters in the variance function. The identifiability
of B up to the sign can be shown exactly as for the rank-1 model in Hoff
and Niu (2012), given sufficient variability in the covariates.
The distribution of the response variable under this model is the product
of two normal densities added to a multivariate normal distribution. The
skewness of the l-th component of Y is equal to

6b(l)xijσuu∗l /σ
3
yijl

, l = 1, . . . , p,

where σuu∗l is the l-th diagonal element of Ψuu∗ , b(l) corresponds to the

l-th row of B and σ2
yijl

is the l-th diagonal element of the marginal variance

in (1). Hence, allowing for correlation between the random effects can be
advantageous in cases with skewedly distributed response variables.

3.1 Distribution of the response given the random effects

The conditional distribution of the response variable given the random
effects is

Yij |Ui,U
∗
i ∼ Np(µxij + Ui,Ψ + (Bxij + U∗i )(Bxij + U∗i )

T ).

Thus, the conditional covariance matrix of the response is different in each
cluster depending on the random effect U∗i . To illustrate the implications
of this conditional variance, let us take the simple case of p = 2 with only
one explanatory variable x and the matrix B of columns b1 = (1, 1)T

and b2 = (−2,−2)T . Figure 1 presents the conditional variance σ2
1 and

covariance σ12 in function of the covariate for the two cases U∗i = (−5, 0)T

and U∗i = (5, 0)T assuming that Ψ is the identity matrix. In the first
case, the expected variance of Y1 is an increasing function of x for the
observations in the cluster, while the expected covariance between Y1 and
Y2 is decreasing. The effect of the covariate on the expected variance and
covariance terms is the opposite in the second cluster compared to the first
case.
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FIGURE 1. Effect of including the random effect U∗. The conditional variance
of the response variable σ2

1 and covariance σ12 is presented for a cluster with
U∗i = (−5, 0)T (left panel) and another cluster with U∗i = (5, 0)T (right panel).

3.2 Variability given the random effect in the mean

Under the uncorrelated model (Ψuu∗ = 0), the covariance matrix of the
response depends only on the random effect U∗i . On the other hand, when
assuming the correlated model, the variance depends indirectly on Ui due
to its correlation with the random effect in the covariance structure.
Let us define Ubl

i = (Ui, U
∗
il) as the vector of size p + 1 that contains

the random effect for the mean and the l-th component of U∗i , for l =
1, . . . , p. The covariance matrix of this vector is Kl = Var(Ubl

i ) which
can be obtained from the corresponding elements of Ψb and let us define
Ql = K−1

l = [qlij ] as its inverse. Thus, the conditional expectation of the
random effect in the factor loadings given the random effect in the mean
part is E(U∗i |Ui) = QUi, where

Q = −
[
diag

(
q1
(p+1)(p+1), . . . , q

p
(p+1)(p+1)

)]−1

q
1
(p+1)1 · · · q1

(p+1)p

...
...

. . .
...

qp(p+1)1 · · · qp(p+1)p

 ,

and the conditional variance of the response variable is

Var(Yij |Ui) = Ψ + ΨU∗|U + Bxijx
T
ijB

T + BxijU
T
i QT + QUix

T
ijB

T , (2)

where ΨU∗|U = Var(U∗i |Ui) is a constant matrix. Thus, the implied con-
ditional variance of the response depends linearly on the random effect in
the mean. It is in contrast with the uncorrelated model, where this random
effect has no effect at all.
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TABLE 1. Estimates of the correlated model for the burnout measures.

Parameter Mean 2.5% 97.5% Parameter Mean 2.5% 97.5%
βexpe.n[EE] -0.057 -0.099 -0.017 βenvi.h[EE] -0.134 -0.236 -0.032
βexpe.n[DP ] -0.24 -0.298 -0.181 βenvi.h[DP ] -0.161 -0.263 -0.06
βexpe.n[PA] -0.015 -0.053 0.024 βenvi.h[PA] -0.115 -0.182 -0.048
βsize.u[EE] -0.042 -0.104 0.021 λ0[EE] 0.341 0.219 0.465
βsize.u[DP ] -0.081 -0.151 -0.012 λ0[DP ] 0.359 0.174 0.54
βsize.u[PA] 0.017 -0.03 0.065 λ0[PA] 0.563 0.422 0.726
βenvi.u[EE] -0.184 -0.236 -0.13 λexpe.n[EE] 0.034 -0.029 0.099
βenvi.u[DP ] -0.239 -0.303 -0.176 λexpe.n[DP ] 0.076 -0.011 0.163
βenvi.u[PA] -0.093 -0.136 -0.049 λexpe.n[PA] 0.192 0.114 0.266

4 Modelling the burnout outcomes

The uncorrelated model proposed by Li et al. (2013) (assuming Ψuu∗ = 0)
and the correlated model introduced here were fit to the RN4CAST data
set. The burnout outcomes were modelled considering all the covariates in
the three-level hierarchical structure with Belgian nurses clustered in nurs-
ing units and hospitals. The models were estimated using Gibbs sampling
with normal vague priors for the regression coefficients and vague inverse
Wishart density for each covariance matrix. We compared the two models
based on the deviance information criterion (DIC). For the uncorrelated
model, the DIC is 44236 (pD = 1921), whereas for the correlated model
DIC = 44160 (pD = 1833), indicating a strong preference for the latter.
The estimated correlation matrices between the random effects in the mean
and variance structure at hospital and nursing unit levels with the corre-
lated model are respectively

Cor(Uh.U
∗
h) =

−0.82 −0.58 −0.77
−0.77 −0.65 −0.70
−0.75 −0.57 −0.78

 , Cor(Uu.U
∗
u) =

−0.58 −0.21 −0.52
−0.31 −0.15 −0.51
−0.38 −0.01 −0.78

 .

Thus, most correlations between the random effects are strongly negative,
corroborating the necessity of a model that accounts for it. The Bayesian
estimates of the model are presented in Table 1, indicating that a better
work environment tends to reduce the three burnout measures. Likewise, a
higher number of nurses in the nursing unit tends to diminish the level of
depersonalization and nurses with higher experience report lower emotional
exhaustion and depersonalization levels.
The estimated variance function (1) for personal accomplishment is pre-
sented in Figure 2, as well as the conditional variance (2) given the random
effect in the mean at hospital level. It can be seen that nurses with longer
experience present higher variability for the personal accomplishment mea-
sure compared to nurses with short experience. Additionally, hospitals (it is
also the case for nursing units) with high levels of personal accomplishment
present smaller variance for this burnout outcome.
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FIGURE 2. Marginal variance of PA and conditional variance given Uh.

5 Conclusions

The proposed model that allows for correlation between random effects is
useful to model skewed distributed responses. This alternative appears to
be more appropriate for the RN4CAST dataset based on the DIC. The ran-
dom effects in the mean showed to be strongly negatively correlated with
the random effects in the variance structure, pointing out the necessity of
the proposed model. Regarding the variance part, we found that nurses with
longer experience present generally higher variability for personal accom-
plishment and hospitals and nursing units with high levels of this burnout
measure suffer more homogeneously of that inferiority complex.
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Abstract: Missing values are a common phenomenon in applied research. While
various imputation methods are available for metrically scaled variables, methods
for categorical data are scarce. An imputation method that has been shown to
work well for high dimensional metrically scaled variables is imputation by near-
est neighbor methods. In this paper, we extend the weighted nearest neighbors
approach to impute missing values to the case of categorical variables. The pro-
posed method explicitly uses the information on association among attributes. A
version of Lq-distance based on dummy variables is proposed. The performance
of different imputation methods is compared in terms of the proportion of falsely
imputed values. Simulation results show that the weighting of attributes yields
smaller imputation errors than existing approaches.

Keywords: Categorical data; Weighted nearest neighbors; Kernel function.

1 Introduction

Categorical data often come with missing values but approaches to the
imputation of categorical variables are scarce. The k-nearest neighbors
method originally developed for continuous data (Troyanskaya et al., 2001),
cannot by employed to non-metric data such as unordered categorical or or-
dinal data (Schwendler, 2012). Some existing methods to impute attributes
are based on the mode or weighted mode of k-nearest neighbors.
For categorical data one has to use specific distances or similarity measures.
Distance measures for categorical data are typically based on an R × C
contingency table, where R and C are the number of values that the two
attributes can assume. Some commonly used distance measures include the
Simple Matching Coefficient (SMC), Cohen’s κ , or the Manhattan or L1

distance.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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The Euclidean or variants of the Minkowski distance give an equal impor-
tance to all the variables in the data matrix when computing the distance.
But for a larger number of variables, the equal weighting ignores the com-
plex structure of correlation/association among these variables. Then it is
helpful to utilize this information to obtain better distance measures. We
propose a weighted distance that explicitly takes the association among
covariates into account. More specifically, highly associated covariates are
given higher weights forcing them to contribute more strongly to the com-
putation of the distance than weakly associated covariates.

2 Weighted distance measure for categorical data

Let data be collected in Z(n×p) = (Zis) andO(n×p) = (ois), where Zis is the

ith observation on the sth attribute, and ois = 1 if Zis was observed, ois = 0
if it was missing. The categorical observations Zij in the data matrix Z,
can assume values cj ∈ {1, . . . , kj}, j = 1, . . . , p, where kj is the number of
categories that the jth attribute can take. For the computation of distances,
the categorical variables are transformed into binary variables. Thus the
observation Zij becomes a vector, zTij = (zij1, . . . , zijkj ) with zij1 = 1 if

Zij = r. The dummy vectors zTij for a nominal variable with four categories
can be written as

category zij1 zij2 zij3 zij4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

The observation vectors in the transformed data matrix can be written as
zTi = (zTi1, . . . ,z

T
ip). Let now zis be a missing entry in the i-th observation,

that is Ois = 0. Then the distance between the i-th and the j-th observation
is defined by

dq,C(zi, zj) =

(
1

nij

p∑
l=1

kl∑
c=1

|zilc − zjlc|qI(oil=1)I(ojl=1)C(δsl)

)1/q

, (1)

where nij =
∑p
l=1 I(ois=1).I(ojs=1) denotes the number of valid components

in the computation of distances. The crucial part in the definition of the
distance is the weight C(δsl). C(.) is a convex function defined on the
interval [−1, 1] that transforms the measures of association into weights and
δsl is a measure of association between attributes s and l. It is worth noting
that the distance is specific to the sth attribute, which is to be imputed.
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For C(.) we use the power function C(δsl) = |δsl|m. So the attributes
that have a higher association with the sth attribute are contributing more
to the distance and vice versa. The higher the value of association, the
more it contributes to the computation of the distance. Note also that only
the available pairs i.e., I(oil=1)I(orl=1), are used in the computation of the
distance. We use Cramer’s V, which is based on the χ2-statistic, to measure
the association among attributes.

3 Weighted NN Imputation

Let zis be a missing value in Z(n×p) matrix. Then one finds the k nearest
neighbor observation vectors z(k) based on the distances defined in equation
(1)

z(1), . . . ,z(k) with d(zi, z(1)) ≤ · · · ≤ d(zi, z(k)).

The weighted imputation estimate is obtained by the relative probabilities
(π̂c) for each class,

π̂c = ẑ.jc =

k∑
l=1

w(zi, z(j))z(l)jc,

where c = 1, . . . , kj . One may draw at random from the distribution. The
weights are defined by

w(zi, zj) =
k(d(zi, zj)/λ)∑k
l=1 k(d(zi, zj)/λ)

, (2)

wherek(.) is a kernel functions (tricube, Gaussian etc.) and λ is tuning
parameter. If one uses all the available neighbors that is k = ñ, then λ is
the only and crucial tuning parameter.
The imputed estimate is the value of c ∈ {1, . . . , kj} with highest value
of π̂. In other words, the weighted imputation estimate of a categorical
missing value zis is

ẑis = arg max
kj
c=1 π̂c,

One may obtain more than one values with the same probability (π̂). In
this case, only one value at random is selected.

4 Simulation Studies

This section includes the application of the proposed method using simu-
lated data to check if the suggested distance measure contributes to better
imputation or not.
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We generated 200 samples of size n = 100 and p = 10, 50 predictors drawn
from a multivariate normal distribution with N(0,Σ). The correlation ma-
trix Σ has an autoregressive type of order 1 with ρ = 0.9. We construct
categories from the continuous data by setting cut points. For example, for
four categories ncat = 4, with equal probability (πc) for all the predictors,
the quartiles Q1, Q2, Q3 are used as cut points, where Q1, Q2, Q3 are the
usual lower quartile, median and upper quartile respectively, which divide
the data into four equal parts. So in this case, π1 = π2 = π3 = π4 = 0.25.
In general, to create c categories of a variable one needs c − 1 cut points
and each category has πc = 1/c. In each sample, 10%, 20%, 30% of the
total values were replaced by missing values completely at random.
The missing values are imputed using Mode imputation, random forests
(RF) and proposed weighted nearest imputation methods. In proposed
method (wNNSelcat), the distance (1) is computed using q = 1, 2. The
tuning parameters λ and m are estimated by cross validation procedure. In
the data matrix some values, for example 5% of the total available values,
are removed randomly and then imputed using specific values of λ and m.
The pair of values that provides smaller imputation error is chosen as λopt
and mopt for that particular data matrix.
To compare the performance of different imputation methods, the propor-
tion of falsely imputed categories (PFC) is computed for each imputation
method.

PFC =
1

n∗
∑

zis:ois=0

I(zis 6=ẑis),

where n∗ is the number of missing values in the data matrix, zis is the true
value and ẑis is the imputed value.

When ncat is same for all the attributes

In our first simulation setting, the number of categories (ncat) of all the
attributes is same but the categories within each attribute (c = 1, · · · , ncat)
may have an unequal chances of their occurrence (πc). The purpose is to
investigate whether πc do have any effect on the imputation results.
We use q = 1, 2 in the distance calculation of wNNSelcat method to get L1

and L2 metrics. The tuning parameters are estimated by cross validation
and these optimal values, λopt and mopt, are used to estimate the final
imputed values.
The method by Schwendler (2012) is used as benchmark only in this simu-
lation setting where all the attribute have an equal number of categories. In
this method, k neighbors are chosen based on some distance measure and
their weighted average is used as an imputation estimate. But this method
requires the selection of suitable value of k (the number of nearest neigh-
bours) and a distance metric. We use Cohen, Pearson corrected coefficient
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FIGURE 1. Boxplots of proportion of falsely imputed categories for MCAR miss-
ing pattern with ncat = 4 and 10% missing data. Left panel shows when proba-
bility of occurrence of each category (πc) is same and right panel for probability
of occurrence of each category (πc) is not same.

(PCC) and simple matching coefficient (SMC) distances to compare the
performance. Cross-validation is used to find the suitable value of k and
the value with smaller PFC is selected.
The resulting average PFC for ncat = 4 with 10% missing values are shown
in Figure 1. Clearly, the weighted method (wNNSelcat) for imputation pro-
vides smaller imputation error whether the categories have the same prob-
ability of occurrence (Fig.1: left panel) or not (Fig.1: right panel). It is also
worth noting that the difference of L1 and L2 metric is not noticeable.

When ncat is different for the attributes

The second simulation setting investigates a more general case when nei-
ther the number of categories ncat nor the the probability of occurrence of
categories (πc)is same. we use ncat = 3, 4 and ncat = 3, 4, 5 for the variables.
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FIGURE 2. Boxplots of proportion of falsely imputed categories for MCAR miss-
ing pattern. S = 200 samples n = 100, p = 50 were drawn from multivariate nor-
mal distribution using autoregressive correlation structures to form ncat = 3, 4
categories.

The results only for n = 100, p = 50 , ncat = 3, 4 with 10%, 20%, 30% miss-
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ing values are shown in Figure 2. In this data matrix, some of the variables
chosen randomly are divided into ncat = 3 and the rest are divided into
ncat = 4 categories. So the number of values that a variable can assume are
different for all the variables in a 100× 50 data matrix. The cut points are
also chosen such that the probability of occurrence of each category (πc)
is not the same. Figure 2 shows that mode imputation perform poor as
compared to random forest and (wNNSelcat) method. The random forest
is a good competitor but nevertheless (wNNSelcat) provides smallest im-
putation errors. The choice of L1 or L2 metric do not have any significant
effect on the results.
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Abstract: Data analysed here derive from experiments conducted to study neu-
rons’ activity in the visual cortex of behaving monkeys. We consider a spatio-
temporal adaptive penalized spline (P-spline) approach for modelling the firing
rate of visual neurons. To the best of our knowledge, this is the first attempt
in the statistical literature for locally adaptive smoothing in three dimensions.
Estimation is based on the Separation of Overlapping Penalties (SOP) algorithm,
which provides the stability and speed we look for.

Keywords: Visual neuron; Visual receptive field; Adaptive Smoothing; P-splines;
SOP algorithm

1 Visual receptive fields

Electrophysiology studies record the electrical activity produced by neu-
rons. They allow the study of the association between sensory stimuli and
neural response in any part of the brain. Neurons produce sudden changes
in their membrane potential known as ‘spikes’, that can be recorded using
microelectrodes. The analysis of the frequency of spike discharges provides
insights on how the neurons and the nervous system work.
Visual receptive fields (RFs) are small areas of the visual field that a par-
ticular visual neuron ‘sees’. Reverse cross-correlation is a receptive field

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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mapping technique used for studying how visual neurons process signals
from different positions in their receptive field. From the neuron responses
(spikes) we can infer the spatio-temporal properties of the RFs (i.e., when
and where a sensory stimulus produces a response). A detailed explanation
on how the reverse cross-correlation technique was used in the experiments
analyzed here can be found elsewhere (Rodŕıguez-Álvarez et al., 2012).
Schematically, the subject (a monkey) was viewing two monitors (one for
each eye) with a fixation target. Within a square area a bright or dark
spot was flashed at different positions in a pseudorandom manner. Neuron
spikes were recorded while the stimulus was delivered. When a spike was
produced, the stimulus position at several pre-spike times was read. As a
result, a set of numerical matrices (one for each pre-spike time) containing
the number (counts) of times the stimulus was at that given position when
a spike occurred is obtained. The graphical representation of each of these
matrices is called receptive field map (RFmap), and can be regarded as a
representation of the firing rate of the neuron.

2 Three-dimensional adaptive P-spline

For each neuron, the reverse cross-correlation technique provides a dataset
consisting of a series of 16 matrices of dimension 16 × 16, each matrix
corresponding to the different pre-spike times considered (between −20
to −320 milliseconds). We adopted a Poisson model which expresses the
neuron response (i.e., number of spikes) as a smooth function of both space
and time

log (E [y | r, c, t]) = log (nrcλrct) = log (nrc) + f (r, c, t) , (1)

where r indicates the row of the matrix, c the column (r, c = 1, . . . , 16),
and t the pre-spike time (t = −20, . . . ,−320). nrc denotes the number of
stimulus presentations on each particular grid position (the offset) and λrct
is the intensity parameter (or firing rate). The smooth function f(·, ·, ·) was
represented by the tensor product of three univariate B-spline basis (Eil-

ers and Marx, 2003), i.e., f(r, c, t) =
(
B

(16×c3)
3 ⊗B(16×c2)

2 ⊗B(16×c1)
1

)
θ,

where ⊗ denotes the Kronecker product.
In order to avoid over-fitting, the previous model can be estimated by
penalized-likelihood methods (Eilers and Marx, 2003). In the absence of
locally adaptive smoothness, the anisotropic penalty matrix is defined as

λ1 (Ic3 ⊗ Ic2 ⊗DT

1D1) + λ2 (Ic3 ⊗DT

2D2 ⊗ Ic1) + λ3 (DT

3D3 ⊗ Ic2 ⊗ Ic1) ,
(2)

where λ1, λ2 and λ3 are the smoothing parameters, and Dd (d = 1, 2, 3)
are difference matrices of possibly different order qd.
In adaptive P-spline smoothing (see, e.g., Rodŕıguez-Álvarez et al., 2015a)
each λd in (2) is replaced by a vector of smoothing parameters λd, where
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each component is associated with one coefficient difference (along the d-
direction). However, this approach would imply as many smoothing pa-
rameters as coefficient differences, which could lead to under-smoothing
and unstable computations. To reduce the dimension, λd is modelled by
means of B-splines, i.e.,

λ1 =
(
C

((c1−q1)×p11)
11 ⊗C(c2×p12)

12 ⊗C(c3×p13)
13

)
φ1 = C1φ1,

λ2 =
(
C

(c1×p21)
21 ⊗C((c2−q2)×p22)

22 ⊗C(c3−p23)
23

)
φ2 = C2φ2,

λ3 =
(
C

(c1×p31)
31 ⊗C(c2×p32)

32 ⊗C((c3−q3)×p33)
33

)
φ3 = C3φ3,

where Cij (i, j = 1, 2, 3) are B-spline regression matrices, with less
columns than rows to ensure that the dimension is in fact reduced. The
adaptive penalty matrix in three dimensions can be then expressed as

p11p12p13∑
s=1

φ1s (Ic3 ⊗ Ic2 ⊗D1)
T
diag (c1,s) (Ic3 ⊗ Ic2 ⊗D1) +

p21p22p23∑
u=1

φ2u (Ic3 ⊗D2 ⊗ Ic1)
T
diag (c2,u) (Ic3 ⊗D2 ⊗ Ic1) + (3)

p31p32p33∑
v=1

φ3v (D3 ⊗ Ic2 ⊗ Ic1)
T
diag (c3,v) (D3 ⊗ Ic2 ⊗ Ic1) ,

where cd,l denotes the column l of Cd.
Estimation of the three-dimensional P-spline model for Poisson data (1)
subject to the adaptive penalty defined in (3) can be based on its mixed-
model representation. Restricted maximum likelihood (REML) estimates of
the variance components (or smoothing parameters) are obtained by means
of the Separation of Overlapping Penalties (SOP) algorithm, recently pro-
posed by Rodŕıguez-Álvarez et al. (2015a,b). It should be noted that the
reformulation of model (1) as a mixed model does not gives rise to a diag-
onal precision matrix, and thus, some of the computational advantages of
SOP are lost. Nevertheless, even in this case, the algorithm provides reason-
able computing times. Besides, Generalized Linear Array Models (GLAM,
Currie et al., 2006) can be used to compute the inner products involved
in the mixed model equations as well as the penalty matrices given in (3),
thus improving the speed of the estimation algorithm.

3 Results

For illustration purposes, we show the results for a single visual neuron
from area V1 (primary visual cortical area). Model (1) was estimated with
and without assuming locally adaptive smoothness by means of the SOP
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algorithm and GLAM . In both cases, we used second-order differences
(qd = 2) and marginal B-splines bases of dimension cd = 7. For the adap-
tive approach, we chose pij = 4 (i, j = 1,2,3), yielding a total of 192 (3×43)
smoothing parameters (or variance components). Figure 1 shows the ob-
served and estimated series of smooth RFmaps for several pre-spike times
using both approaches. As it can be seen, both analyses show a central
area of high values that represents the visual RF of the neuron, which is
in concordance with the raw data. However, there are two major differ-
ences: whereas the non adaptive approach seems to indicate that the time
between sensory stimulus and response spans from 20 to 100 ms, the adap-
tive method reduces this time span from 40 to 100 ms. Also the adaptive
approach shows a sharper increase and a larger estimate of the firing rate
than the non-adaptive approach (see also Figure 2). In terms of computa-
tional effort, in the absence of adaptive smoothness the algorithm needed
about 14 seconds, whereas the complexity afforded by the adaptive ap-
proach increased the computing time to 133 seconds.
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FIGURE 1. Level plot of the observed and smoothed firing rates of the RFmap
with and without locally adaptive smoothness.
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FIGURE 2. Observed and smoothed firing rates of the RFmap by row for column
8 (top figure); and by column for row 9 (bottom figure). Gray vertical lines:
observed. Black line: adaptive approach. Red line: non adaptive approach.
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Abstract: In epidemiologic cohorts of elderly, follow-up is often interrupted by
drop-out or death. The two main methods used for handling this type of data are
mixed models, estimated by likelihood maximisation and marginal models, esti-
mated by GEE. When focusing on covariate effects, there is a consensus on the
fact that mixed models estimate a subject-specific effect while marginal mod-
els estimate a population-based effect. When the models are linear, regression
parameters have both interpretations. Nevertheless, when the follow-up may be
truncated by death, the interpretation of the estimands is under debate. On one
hand, marginal models estimate the effect among the population that is alive,
prone to attrition. As the surviving population is likely to be healthier, several
weighting methods of GEE were proposed to correct for this selection. On the
other hand, mixed models estimate the effect of the covariates adjusted on the
random effects (’subject-specific effect’) but some authors interpret these param-
eters as the effect in a hypothetic population with no risk of death, said immortal
cohort. In this work, we compare mixed models estimated by likelihood maximi-
sation and the marginal models estimated by unweighted/weighted GEE in terms
of parameter interpretation, efficiency and robustness through a simulation study.
We investigate different associations between the marker and the risks of death
and drop-out and we consider two weighting methods: by the inverse probabil-
ity to be observed and by the inverse probability to be observed given that the
subject is alive. These models are also applied to the French prospective cohort
Paquid which includes 3777 subjects who took cognitive tests every 2/3 years
during 25 years.
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1 Introduction

In elderly cohorts, longitudinal data may be interrupted as subjects drop
out or die, leading to possibly informative missing data. The issue is even
more critical if death has common risk factors with the process under con-
sideration.

The most frequently used methods are mixed models and marginal models.
Mixed models are estimated by likelihood maximisation on available data
and this estimation procedure is equivalent to imputing data after drop-
out and after death. Thus, this method is criticized since the estimators
are interpretable among an ”immortal” population, as stated in Kurland
(2009), where no one is at risk of death nor drop-out.

On the other hand, marginal models, estimated by Generalized Estimat-
ing Equations, provide the ”partly conditional” expectation of the process,
defined in Kurland (2005) as the expectation among subjects that are cur-
rently alive and observed. Since the considered population tend to be se-
lected, weighted methods were proposed to correct for the selection biases
due to death and drop-out.

As there is no consensus on the best method, the aim of this work is to
compare linear mixed models, estimated by likelihood maximisation, and
linear marginal models, estimated by unweighted/weighted GEE, when the
longitudinal follow-up is truncated by death and any other type of drop-out.

2 Interpretations

When considering a linear mixed model, formulated by:

E(Yi(t)|Xi(t)) = Xi(t)β+Zi(t)ui+εi(t) with ui ∼ N (0, B), εi(t) ∼ N (0, σ2)
(1)

then β = E(Yi(t)|Xi(t) = 1, ui)− E(Yi(t)|Xi(t) = 0, ui)

and the effect β of the covariate X on the mean of the marker Y is ad-
justed on the random effects ui, which represent the unobserved individual
predictors. In other words, β represents the effect of X on the individual
change, called ’subject-specific’ effect.

From model (1), the linear marginal model is formulated by:

E(Yi(t)|Xi(t)) = Xi(t)β

then β = E(Yi(t)|Xi(t) = 1)− E(Yi(t)|Xi(t) = 0),

and β represents the effect of X on the population mean of Y , averaged on
the random effects, called ’population-averaged’ effect. Thus, with complete
data, the parameters from the linear mixed model have both the subject-
specific and population-averaged interpretations.
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When the follow-up is truncated by death and dropout, several expectations
are of interest:

- E(Yij |Xi(t), ui)

Subject-specific mean in the immortal population

- E(Yij |Xi(t), ui, Ti > t)

Subject-specific mean in the population currently alive

- E(Yij |Xi(t))

Population-averaged mean in the immortal population

- E(Yij |Xi(t), Ti > t)

Population-averaged mean in the population currently alive

where Ti is the age at death. Under classical mechanisms of informative
missing data, we show that the subject-specific interpretation still holds in
the population currently alive as:

E(Yi(t)|Xi(t), ui) = βXi(t) + Zi(t)ui = E(Yi(t)|Xi(t), ui, Ti > t)

Thus, the subject-specific expectations in the population currently alive
and in the immortal population are equal and the parameter from mixed
models can be interpreted as the subject-specific effect on the individual
change in the immortal cohort but also in the mortal cohort.

Nevertheless, with incomplete data, their population-averaged interpreta-
tion holds only among the immortal population as:

E(Yi(t)|Xi(t)) = βXi(t) 6= E(Yi(t)|Xi(t), Ti > t) = βXi(t)+E(ui|Xi(t), Ti > t)

The marginal expectation among subjects currently alive and in the immor-
tal population are different. We propose an approximation of E(ui|Xi, Ti >
t) to quantify the difference between the regression parameters in the im-
mortal cohort and the ones in the population currently alive.

To correct for the selection biases due to drop-out and death, two weighted
versions of GEE were proposed. First, Dufouil (2004) proposed to define
the weights as follow:

w
(1)
ij =

P (Rij = 1|Xij , Sij = 1)

P (Rij = 1|Xij , Sij = 1,Hi(tij))
,

with Rij = 1 if subject i is observed at visit j and 0 if not, Sij = 1 if subject
i is alive at visit j and 0 if not, Hi(tij) the history of the marker prior to
time tij , time of the jth visit for subject i. Thus, the contribution to the
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score equation of subjects that are alive and who are likely to drop out is
overweighted to correct for the selection bias due to drop-out only. The es-
timated marginal parameters are interpretable among a mortal population
with no drop-out.

In a second version, Weuve (2012) defined the weights by:

w
(2)
ij =

P (Rij = 1|Xij)

P (Rij = 1|Xij ,Hi(tij))
,

The contribution of subjects who are likely to drop out or to die is over-
weighted to correct for the selection biases due to drop-out and death. This
method estimates the marginal effect among an immortal population with
no drop-out nor death.

3 Simulations

To check and illustrate our results, we performed a simulation study to
compare linear mixed models estimated by likelihood maximisation and
linear marginal models estimated by GEE under different assumptions re-
garding the association between the process of interest and the risks of
death and drop-out, described in Little (2002).

For instance, we show that a linear individual trend may lead to a quadratic
trend of the marginal mean of Y in the population still alive. Besides, if
there is no subject-specific effect of the covariate X on Y and if the risk
of death depends on an interaction between X and Y , an association may
be observed between X and the marginal mean of Y among subjects still
alive.

4 Application

The mixed models estimated by likelihood maximisation and marginal
models estimated by GEE were applied and compared on the French prospec-
tive PAQUID cohort, designed to study the normal and pathological brain
aging. This cohort includes 3777 subjects from two French departments,
who were visited every two or three years during 25 years and completed a
battery of psychometric tests. We considered gender and educational level
as risk factors of the cognitive decline of the ISAACS Set Test, which as-
sesses verbal fluency.
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Abstract: This study analyzes the impact of nurse staffing (patient-to-nurse ra-
tio) and nurse work environment on patient experiences with hospital care and
its possible moderation by nurse education. A Bayesian three-level moderated
mediation model is fitted to the data collected during a large European nurse
workforce survey, the RN4CAST study, whose multi-level structure is taken into
account. The measure of nursing care undone behaves as a mediator in this re-
lationship. We treat the ordinal outcome as an observation coming from a latent
continuous normal distribution with unknown threshold specification.
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1 The RN4CAST Study and the Research Question

The Registered Nurse Forecasting (RN4CAST) study (Sermeus et al., 2011)
is a cross-sectional survey of patients and nurses in 12 European countries,
in which the patients and nurses are further clustered in hospitals and
nursing units. The data collected in 2009 – 2010 during this FP7-funded
project contain information on various hospital characteristics such as nurse
staffing, nurse education, number of beds, overtime work, etc. The patients
provided information on their satisfaction with hospital care and hospital
rating.
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copyright remains with the author(s). Permission to reproduce or extract any
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The research question we will address in this paper is how the nurse staffing
influences patient experiences with hospital care and if this effect changes
with nurse education. As an outcome in our model, we used the measure
of patients’ willingness to recommend the hospital which was an ordinal
outcome with 4 levels (definitely yes, probably yes, probably no, definitely
no).

2 Three-Level Mediation Model with Ordinal
Outcome

To answer the research question with the use of the subset of RN4CAST
data which corresponds to eight countries where both patient and nurse sur-
vey were carried out (Belgium, Finland, Germany, Greece, Ireland, Poland,
Spain, and Switzerland). There were several issues we needed to tackle by
our modelling approach. The complex multi-level data structure (patients–
hospitals–countries) led us to take the clustering of patients into account.
Moreover, it was necessary to consider the ordinal nature of the patient out-
come, to decide which variables should be included in the mediating part
of the model and which variables could act as confounders. The proposed
model also allows for a moderating effect of nurse education.

2.1 Definition of Response

Our model is closely related to the three-level moderated mediation model
considered by Bruyneel et al. (2015) who analyzed the mediating effect of
nursing care undone on the relationship of nursing and patient experiences
with hospital care. In their paper, the original ordinal outcome variables
were transformed to binary responses in order to conduct the analysis with
a multi-level probit model, which is a rather artificial approach. Here we
base the analysis on full utilization of the information provided by the
ordinal outcome.
We denote the ordinal patient outcome (patients’ willingness to recommend
the hospital in our case) by zijk which represents the value of the outcome
measured on the i-th patient from hospital j and country k.
A natural approach to be used in case the outcome of a model is ordinal,
is to assume that the ordinal variable is derived from a continuous latent
variable yijk which is of our primary interest. Note that this approach has
become increasingly popular especially in context of the Bayesian approach.
We start by exploiting the approach of Song and Lee (2012, p. 87), and
assume that the latent variable is normally distributed. In addition, we
assume there exist unknown thresholds α1, . . . , αM , such that if the value
of the latent variable occurs between two specified thresholds then it cor-
responds to a given value of the ordinal outcome. To be more specific,

zijk = m, if αm < yijk ≤ αm+1, m = 0, . . . ,M,



Rusá et al. 281

−∞ = α0 < α1 < · · · < αM < αM+1 =∞ with 0, . . . ,M the unique values
of z.

2.2 Definition of Covariates

The hospital-level nurse staffing variable was calculated as the mean num-
ber of patients assigned to nurses on their last shift. The nurse working en-
vironment was measured by the composite nursing work environment score
(Aiken et al., 2012) which was calculated from the 32-item Practice Envi-
ronment Scale of the Nursing Work Index. The education is a hospital-level
variable computed as the proportion of nurses with at least a bachelor’s
degree in the hospital. Other nurse characteristics (averaged by hospital)
included in the model were overtime work, performing non-nursing tasks,
years of experience, type of employment (full-time, part-time), etc. Those
main explanatory variables will be further denoted by xjk.
The nurse staffing and the nurse education variables were both group-
mean centered in order to facilitate easier interpretation (the country-level
mean was subtracted from the original hospital-level mean). Next to the
previously mentioned explanatory variables, we also controlled for the effect
of several hospital structural characteristics such as the number of beds, the
teaching status (teaching hospital or nonteaching hospital) and technology
level (with open heart surgery, organ transplantation, or both defining high-
technology hospitals). We denote those explanatory variables by cjk.
When taking into account the extent of nursing care undone, it is logical
that poor staffing in some hospitals can lead to more nursing care left un-
done which in turn will affect patient experiences with care. In other words,
nursing care undone (mjk) mediates the relationship of patient satisfaction
and the main explanatory variables. The dependence of the outcome yijk
on the independent variables xjk is then partially explained by two mea-
sures of nursing care undone mjk(clinical care activities left undone and
planning and communication activities left undone).

2.3 Model

The purpose of our modelling was to ascertain whether there was a signif-
icant effect of nurse staffing and the quality of nurse work environment on
the patient outcome. Moreover, we added the moderating effect of nurse
education such that we included the interaction term between the nurse
staffing and the nurse education variables into the model.
In a mediation analysis, we focus on the estimation of the indirect effect
of X on Y through a mediator variable M which can be illustrated using
two linear models: M = γ0 + γXX + εM and Y = β0 + βXX + βMM +
εY . The mediation is said to be moderated by another variable W if the
interaction between X and W is added to both equations. In other words,
the equations in a moderated mediation model have the forms M = γ0 +
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γXX + γWW + γXWXW + εM , Y = β0 + βXX + βWX + βXWWX +
βMM + εY . In our application, the effect of nurse staffing was moderated
by nurse education (in the following model, the interaction is included in
the vector of covariates xjk).
In order to deal with the multi-level structure of the RN4CAST data, we
also included both hospital-level (ujk) and country-level (uk) random ef-
fects to capture dependencies between observations measured at common
hierarchical levels. Consequently, the considered model equation for the
latent outcome variables has the following form:

yijk = β0 + β>c cjk + β>x xjk + β>mmjk + ujk + uk + εijk,

where

ujk ∼ N (0, σ2
hospital), uk ∼ N (0, σ2

country), εijk ∼ N (0, σ2),

mjk = (m1,jk,m2,jk)>, mt,jk = γt0 + γ>txxjk + ξt,jk,

ξt,jk ∼ N (0, σ2
mt), t = 1, 2.

We assume that ujk, uk, εijk, ξ1,jk, ξ2,jk are mutually independent. To avoid
identification issues, we fix the thresholds α1 and αK as was suggested in
Song and Lee (2012, p. 89).
Bayesian inference based on MCMC simulation was used. To this end, semi-
conjugate vague priors on the model parameters were specified. Namely,
normal priors for all β and γ parameters (β0,β

>
c ,β

>
x ,β

>
m, γ10, γ20,γ

>
1x,γ

>
2x),

an inverse gamma prior for (σ2
hospital, σ

2
country, σ

2, σ2
m1, σ

2
m2). For the thresh-

olds, the following noninformative prior was used (Song and Lee, 2012,
p.117):

p(α2, . . . , αM−1) ∝ C, for α2 < · · · < αM−1.

The samples from the posterior distributions were obtained using the Stan
software. The inference is based on MCMC methods, mainly the Hamilto-
nian Monte Carlo and the Metropolis algorithm.

3 Results

The Bayesian estimates and the numerical standard errors were computed
from 10000 observations generated in two chains which were collected after
discarding the burn-in of the same length. Using Intel(R) Xeon(R) CPU
E5520 @ 2.27GHz, 24 GB RAM, the computing time for getting the re-
sults was approximately 6.5 hours. Table 1 shows the estimated posterior
means and HPD intervals of the parameters in the moderated mediation
model. Because of the limited space we do not show the estimates of the pa-
rameters in the planning/communication left undone mediating equation.
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Patients recommending
the hospital

Estimate 95% HPD CI
Organization of nursing care

Nurse staffing −0.025* (−0.051;−0.001)
Nurse education 0.336 (−0.048; 0.696)
Staffing * Education −0.072 (−0.225; 0.099)
Nurse working env. 0.184 (−0.064; 0.435)
Years of experience −0.006 (−0.024; 0.010)
Type of employment −0.206 (−0.573; 0.153)
Non-nursing tasks 0.070 (−0.265; 0.412)
Overtime work 0.379* (0.039; 0.735)

Care left undone (mediators)
Clinical care −0.205* (−0.302;−0.106)
Planning/communication −0.004 (−0.126; 0.136)

Confounding variables
Number of beds 0.000 (0.000; 0.000)
Technology level −0.021 (−0.155; 0.115)
Teaching status −0.004 (−0.172; 0.171)

Clinical care left undone
Estimate 95% HPD CI

Organization of nursing care
Nurse staffing −0.010 (−0.056; 0.036)
Nurse education 0.722* (0.002; 1.454)
Staffing * Education −0.415* (−0.711;−0.100)
Nurse working env. −1.305* (−1.651;−0.948)
Years of experience −0.033* (−0.063;−0.004)
Type of employment 0.225 (−0.338; 0.837)
Non-nursing tasks −0.075 (−0.655; 0.505)
Overtime work 0.831* (0.203; 1.453)

Note. HPD CI = Highest posterior density credible interval,
* indicates statistical significance, Staffing * Education =
Interaction of Nurse staffing and Nurse education.

TABLE 1. Findings for the Eight-Country Moderated Mediation Analysis Esti-
mating the Moderating Effect of Nurse Education on the Effect of Nurse Staffing
on Patient Recommending the Hospital Through Care Left Undone.
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Worse nurse staffing (= higher patient-to-nurse ratio) leads to lower values
of patients’ willingness to recommend the hospital.
With respect to the clinical care left undone mediator, the effect of nurse
staffing in its mediating equations is not significant but the inclusion of
nurse staffing and nurse education interaction is essential. In hospitals with
poor nurse staffing, its effect is smaller if the proportion of nurse with
a bachelor degree is higher. Neither the effect of nurse staffing, nor the
interaction between nurse staffing and nurse education is significant in the
other mediator equation.
The effect of nurse working environment and work experience is fully medi-
ated through clinical care undone. More favourable nurse working environ-
ment leads to less care left undone which in turn results in better patient
satisfaction with care. Similarly, longer experience of working as a nurse
leads to fewer tasks left undone.
More planning / communication left undone is related to higher propor-
tion of nurses performing non-nursing tasks. The negative effect of overtime
work on patients’ willingness to recommend the hospital is partially me-
diated through clinical care left undone. The type of employment was not
associated with either one of the mediators or the patient outcome.
Clinical care left undone is significantly associated with patients’ recom-
mending the hospital, while the relationship between planning / commu-
nication left undone is not.
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Abstract: A model for results of football matches is proposed that is able to
take into account match-specific covariates as, for example, the total distance a
team runs in the specific match. The model extends the Bradley-Terry model
in many different ways. In addition to the inclusion of covariates, it considers
ordered response values and (possibly team-specific) home effects. Penalty terms
are used to reduce the complexity of the model and to find clusters of teams with
equal covariate effects.
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1 Introduction

Paired Comparisons occur if two objects are compared with respect to
an underlying latent trait. In this work, we consider football matches and
treat them as paired comparisons between two teams where the underlying
latent traits are the playing abilities of the teams. The data we consider
are data from the season 2014/15 of the German Bundesliga. In particular,
match-specific covariates are used to model the results from single matches.
In general, if covariates are to be considered in paired comparison, one has
to distinguish between subjects and objects of the paired comparisons and,
accordingly, between subject-specific, object-specific and subject-object-
specific covariates. In football matches, the teams are the objects while a
single match can be considered to be the subject that makes the comparison
between the two objects/teams. In our application, subject-object-specific
covariates are considered.
The Bradley-Terry model (Bradley and Terry, 1952) is the standard model
for paired comparison data. Assuming a set of objects {a1, . . . , am}, in its

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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most simple form the Bradley-Terry model is given by

P (ar � as) = P (Y(r,s) = 1) =
exp(γr − γs)

1 + exp(γr − γs)
.

One models the probability that a certain object ar dominates or is pre-
ferred over another object as, ar � as. The random variable Y(r,s) is defined
to be Y(r,s) = 1 if ar dominates as and Y(r,s) = 0 otherwise. The parameters
γr represent the attractiveness or strength of the respective objects.

2 Bundesliga Data

The main goal of this work is to analyze if (and which) match-specific
covariates influence the result of football matches. Match-specific covariates
are information on specific measurements of the teams in each match, as
for example the number of kilometers a team runs (Distance). In total, all
the following covariates are known per team and per match:

Distance Total amount of km run

BallPossession Percentage of ball possession

TacklingRate Rate of won tacklings

ShotsonGoal Total number of shots on goal

Passes Total number of passes

CompletionRate Percentage of passes reaching teammates

FoulsSuffered Number of fouls suffered

Offside Number of offsides (in attack)

In particular, it is interesting which covariates have an influence at all
and for which covariates there are different effects for single teams. As the
covariates we consider are collected per team and per match, they generally
can be termed as subject-object-specific covariates.

3 A Paired Comparison Model for Football Matches
Including Subject-Object-Specific Covariates

When using a paired comparison model for football matches several ex-
tensions compared to the standard Bradley-Terry model are needed. The
model has to be able to handle an ordinal response (in particular draws),
home effects and subject-object-specific covariates.
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For that purpose, we propose to use the general model for ordinal response
data Yi(r,s) ∈ {1, . . . ,K} denoted by

P (Yi(r,s) ≤ k) =
exp(δr + θk + γir − γis)

1 + exp(δr + θk + γir − γis)

=
exp(δr + θk + βr0 − βs0 + zT

irαr − zT
isαs)

1 + exp(δr + θk + βr0 − βs0 + zT
irαr − zT

isαs)
.

Basically, the model is a special case of a cumulative logit model and allows
for the inclusion of so-called subject-object-specific covariates zir. See also
Tutz and Schauberger (2015) for a model including object-specific covari-
ates zr and Schauberger and Tutz (2015) for a model including subject-
specific covariates zi. Yi(r,s) encodes an ordered response with K categories
(including a category for draws) for a match between team ar and team as
on matchday i where ar played at its home ground. The linear predictor of
the model contains the following terms:

δr team-specific home effects of team ar

θk category-specific threshold parameters

βr0 team-specific intercepts

zir p-dimensional covariate vector that varies over teams and matches

αr p-dimensional parameter vector that varies over teams.

In general, for ordinal paired comparisons it can be assumed that the re-
sponse categories have a symmetric interpretation so that P (Y(r,s) = k) =
P (Y(s,r) = K − k + 1) holds. Therefore, the threshold parameters should
be restricted with θk = −θK−k and, if K is even, θK/2 = 0 to guarantee for
symmetric probabilities. Instead, the home effects now cover the possible
order effects (the advantage of the home team ar over the away team as).
Instead of fixed abilities of the teams γr, the teams have matchday-specific
abilities γir = βr0 + zT

irαr , depending on the covariates of team aron
matchday i.
Both the home effect and the covariate effects could also be included as
global parameters instead of team-specific parameters. To decide, whether
the home effect or single covariate effects should be considered with team-
specific or global parameters, penalty terms will be used. In particular, the
absolute values of all pairwise differences between the team-specific home
advantages are penalized using the penalty term

P (δ1, . . . , δm) =
∑
r<s

|δr − δs|.

The penalty term enforces the clustering of teams with equal home effects
as it is able to set differences between parameters to exactly zero. As an
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extreme case, the penalty leads to one global home effect parameter if all
differences are set zero. Additionally, also for the team-specific covariate
effects a penalty term is introduced that penalizes the absolute values of
all pairwise differences of the covariate parameters and of the parameters
themselves by

J(α1, . . . ,αm) =

p∑
j=1

∑
r<s

|αrj − αsj |+
p∑
j=1

m∑
r=1

|αrj |.

The penalty enforces clustering of teams with respect to certain covariates,
possibly leading to global effects instead of team-specific effects. Moreover,
due to the penalization of the absolute values covariates can be eliminated
completely from the model. For comparability of the penalties and the
resulting effects, all covariates have to transformed to a joint scale.
Both penalty terms are combined and the respective penalized likelihood

lp(·) = lp(·)− λ(P (δ1, . . . , δm) + J(α1, . . . ,αm))

is maximized. The tuning parameter λ is chosen by 10-fold cross-validation.

4 Application to Bundesliga Data

For easier interpretation of the intercepts, the covariates were centered
(per team around the team-specific means). Centering the covariates only
changes the paths (and interpretation) of the team-specific intercepts which
now represent the ability of a team with every covariate at the team-specific
mean of this covariate. The paths and the interpretation of the covariate
effects stay the same, representing the effect of a covariate for the team abil-
ity when the respective covariate changes (deviates from the team-specific
means).
Figure 1 illustrates the parameters paths for the proposed model, separately
for each covariate along the tuning parameter λ. The dashed vertical line
indicates the model that was selected by 10-fold cross-validation. The paths
illustrate the clustering effect of the penalty terms. It can be seen, that the
home effect seems to be equal for almost all teams, only Eintracht Frankfurt
has its own team-specific home effect. The home effect is positive, therefore,
playing at the home ground is an advantage for all teams. The greatest
effect of all covariates can be seen for Distance. It has a positive effect for
all teams (except Borussia Mönchengladbach). Therefore, the teams gain
better results in matches where they had a good running performance.
Interestingly, the covariate BallPossession has rather negative effects for
all teams. The covariates ShotsonGoal, CompletionRate and Offside were
eliminated completely from the model.
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FIGURE 1. Parameter paths, separately for home effect, intercepts and all (cen-
tered) covariates. Dashed vertical line represents the optimal model according to
10-fold cross-validation.

5 Alternative Modeling Approach

The covariate effects of the model proposed in Section 3 have a very spe-
cific interpretation. Every team has an (unpenalized) intercept that reflects
the average ability of the team over the season. Therefore, the intercepts
also already cover the mean covariate effects of all teams. Accordingly, the
covariate effects captured in the respective parameter vectors αr represent
effects where covariates can explain deviations of the team performance
from its average performance.
However, if one is interested in the total effect of a covariate for the perfor-
mance of single teams, a different parameterization becomes necessary. In
an alternative approach, the team-specific intercepts are simply eliminated
from the model. In this parameterization, the specific ability of team ar on
matchday i is specified by γir = zT

irαr instead of γir = βr0 + zT
irαr as in

Section 3.
In this alternative approach, the mean abilities of the teams can not be
modelled by the team-specific intercepts and have to be replaced by covari-
ate effects. That also implies, that in this alternative model the average
values of the covariates for each team matter and the covariates are not
centered anymore. In Figure 2, for the optimal model (according to 10-fold
cross-validation) the estimated parameters multiplied by the means of the
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respective covariates are plotted. Per covariate, each of these ‘total covari-
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FIGURE 2. Total covariate effects (estimated parameters multiplied by
team-specific covariate means) for alternative modeling approach for optimal
model according to 10-fold cross-validation.

ate effects’ is represented by a circle, larger circles represent (the size of)
clusters of teams. For illustration, the teams Bayern München, Borussia
Dortmund and SC Paderborn are highlighted. Now the covariates BallPos-
session and Passes seem to be the most influential covariates. For example,
Bayern München has a very large effect for BallPossession, and, therefore,
the dominance of Bayern München is strongly related to the BallPossession
of Bayern München. For SC Paderborn (relegated to the 2. Bundesliga),
its rather bad performance is mainly explainable by the covariate Passes.
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1 Introduction

When the first data on gene expression became available, they were anal-
ysed considering each gene separately. However, researchers soon realized
that genes act in a concerted manner, and that cellular processes are often
the result of complex interactions between different genes and molecules.
Nowadays, sets of genes that are responsible for many cellular functions
have been identified, and are collected in publicly available databases (such
as GO and KEGG). These sets of genes, whose function is already known,
can be used to characterize and interpret (“enrich”) the results of new
experiments. This characterization is typically done by means of gene en-
richment analysis (GEA) tests, which allow to compare gene expression
levels between two conditions (experimental and control) and to detect
functional sets of genes that are activated or repressed in the experimen-
tal condition. The power of GEA tests is often low, mostly because they
consider the level of overlap between sets of genes only, and they ignore
associations and dependences that exist between genes.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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Recently, Alexeyenko et al. (2012) and McCormack et al. (2013) have pro-
posed to integrate GEA with information on dependences between genes
by making use of gene networks. The idea is that “enrichment” between
two sets of genes A and B can be assessed by comparing the number of
links connecting nodes in A and B, nAB , with a reference distribution that
assumes that no relation exists between the two sets. Their tests rely on
a normal approximation for the reference distribution (which is discrete),
they require the computation of many network permutations (an activity
that can be highly time consuming) and are restricted to the analysis of
undirected networks.
In the sequel we propose NEAT, an alternative Network Enrichment Anal-
ysis Test based on the hypergeometric distribution. The assumption that
in absence of enrichment NAB is distributed as an hypergeometric arises
quite naturally, and enables us to avoid normal approximations and net-
work permutations. We develop NEAT not only for undirected, but also
for directed and mixed networks, thus providing a common framework for
the analysis of different types of networks.

2 Methods

A graph is a pair G = (V,E), which consists of a set of nodes V connected by
a set of directed or undirected edges E ⊆ V×V . In gene regulatory networks
each gene is represented as a node of the graph, and an edge between two
nodes is drawn to signify dependence between the corresponding genes.
In the inferred network, we expect that individual links may be slightly
unstable and noisy. However, we do expect that inferred links contain a
sign of the relationships between functional gene sets. So, if there is a
functional relationship (i.e., enrichment) between functions described by
sets A ⊂ V and B ⊂ V , then we expect the number of links between the
two groups to be larger (or smaller) than expected by chance.

2.1 Directed and mixed networks

In directed networks, we assess the presence of enrichment from A to B
by considering the number of arrows nAB going from genes in A to genes
belonging to B. The observed nAB can be thought as a realization from
the random variable NAB , with expected value µAB . We compare µAB with
the number of arrows µ0 that we would expect to observe from A to B by
chance, and test H0 : µAB = µ0 versus H1 : µAB 6= µ0. We say that there
is enrichment from A to B if µAB is significantly different from µ0.
We use the hypergeometric distribution to model the null distribution of
NAB . The hypergeometric models the number of successes in a random
sample without replacement: in our case, let’s mark arrows that reach genes
in B as “successful”, and the remaining ones as “unsuccessful”. If there is
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no relation between A and B, we can view the arrows that go out from
genes in A as a random sample without replacement from the population
of arrows present in the graph, and nAB as the number of successes in that
sample. Thus, the distribution of NAB when H0 is true is

NAB ∼ hypergeom(n = oA,K = iB , N = iV ), (1)

where the sample size oA is the outdegree of A, the number of successes
in the population iB is the indegree of B and the population size iV is the
total indegree of the network. So, we expect µ0 = oA

iB
iV

to increase as the
indegree of A, or the outdegree of B, increases. A toy example that explains
the rationale behind NEAT is presented in Figure 1.
Bearing in mind the fact that for a discrete test statistic T the usual formula
for p-values p1 = 2 minP0[(T ≤ t), P (T ≥ t)] can exceed 1, we compute
the p-value using

p = 2 min [P0(NAB > nAB), P0(NAB < nAB)] + P0(NAB = nAB), (2)

which differs from p1 by a factor equal to P0(T = t). A p-value close to 0
can be regarded as evidence of enrichment, because it entails that nAB is
significantly higher/smaller than we would expect it to be under H0. For a
given type I error α, one can then conclude that there is enrichment from
A to B if p < α.
A mixed network is a network where both directed and undirected edges
are present. It is possible to regard a mixed network as a directed network,
where every undirected edge v ∼ w stands for two directed arrows, v →
w and w → v. NEAT adopts such convention for the analysis of mixed
networks.

2.2 Undirected networks.

When dealing with undirected networks, the presence of enrichment be-
tween A and B depends on the number of links nAB that connect genes in
A to genes in B. Here, there is no distinction between indegree and outde-
gree of a node, and it only makes sense to consider the degree of a node:
thus, assumption (1) needs to be properly modified. Define the total degree
of a set as the sum of the degrees of nodes that belong to it: then, the null
distribution is NAB ∼ hypergeom(n = dA,K = dB , N = dV ), where dA,
dB and dV are the total degrees of sets A,B and V .

2.3 Software.

NEAT is implemented in the R package neat, which is available on CRAN

(Signorelli et al., 2016). neat allows the user to specify the network in
different formats, and it includes a set of data and examples.
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FIGURE 1. A directed network with 8 nodes (A) and its bipartite representa-
tion (B). Suppose that one wants to know whether there is enrichment from set
A = {1, 4} to set B = {3, 5, 7}. There are 5 arrows going out from A, and 2
of them reach B. The whole network consists of 15 arrows, of which 4 reach B.
Thus, nAB = 2, oA = 5, iB = 4 and iV = 15. The idea behind NEAT is that, if
the 5 arrows that are going out from A are a random sample (without replace-
ment) from the population of 15 arrows that are present in the network, then
the proportion of arrows reaching B from A should be close to the proportion of
arrows reaching B in the whole network. In this case, it seems that arrows going
out from A tend to reach B more frequently (40%) than other arrows do (27%
of the 15 arrows in the network reach B). However, the computation of the test
leads to p = 0.48: the observed nAB = 2 does not provide enough evidence to
reject the null hypothesis that there is no enrichment from A to B.

3 Simulations

We compare the performance of NEAT with the NEA test of Alexeyenko et
al. (2012) and with the LP, LA, LA+S and NP tests of McCormack et al.
(2013) by means of two simulations. We simulate two undirected random
networks with 1000 nodes, whose degree distributions are a power law in
simulation S1, and a mixture of Poisson distributions in simulation S2. We
test enrichment between 50 sets of nodes, with cardinality ranging from 50
to 100 nodes. We modify the original networks to introduce enrichments
between 100 pairs of these sets, by either increasing or reducing nAB by
a proportion uniformly ranging from 10 to 50%. The results (see Table 1)
show that the distribution of p-values is uniform in both cases for NEAT
and LA, and in one case for LA+S (S1) and NP (S2). NEA and LP, instead,
do not produce uniform distributions in any case. In both S1 and S2, NEAT
turns out to have the highest discriminatory capacity (AUC) and to be by
far the fastest method, from 22 to 3000 times faster than alternative tests.
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TABLE 1. Results of simulation S1 and S2. The best results in each column are
bolded. Abbreviations: pKS denotes the p-value of the Kolmogorov-Smirnov test
for H0 : X ∼ U(0, 1); AUC stands for “area under the ROC curve”. Time is
expressed in seconds.

Simulation S1 Simulation S2
Test pKS AUC Time pKS AUC Time

NEAT 0.399 0.920 0.6 0.343 0.925 0.7
NEA 0.001 0.918 2125.4 0.024 0.912 2151.5
LP 0 0.908 28.6 0 0.904 44.7
LA 0.255 0.897 14.4 0.111 0.908 18.0

LA+S 0.409 0.913 21.8 0.024 0.910 27.6
NP 0.037 0.884 12.9 0.323 0.908 15.8

4 Data analysis

After analysing gene expression patterns of yeast Saccaromyces cerevisiae
in response to different stressful stimuli, Gasch et al. (2000) inferred the
existence of two set of genes, collectively called Environmental Stress Re-
sponse (ESR), that constitute a coordinated, initial reaction to the emer-
gence of any hostile condition in the cell. The original study made use of a
GEA test to characterize the two sets. Here, we incorporate into the analysis
known associations between genes, as represented in the YeastNet network
(Kim et al., 2013). For lack of space, we do not show here the lists of en-
richments detected by NEAT for the two ESR sets; however, such lists can
be retrieved running the example in the help page ?yeast of the R package
neat (Signorelli et al., 2016). In short, NEAT detects most of the enrich-
ments that were found in the original study for the two ESR sets; besides, it
unveils some further enrichments related to molecular transportation and
amino-acid biosynthesis for the set of induced ESR genes, which would be
overlooked if functional couplings between genes were ignored.

5 Conclusion

Traditional gene enrichment analysis assesses enrichment between gene sets
solely on the basis of the extent of their overlap. Network enrichment anal-
ysis is a powerful extension of traditional GEA tests, which makes use
of genetic networks to integrate enrichment analyses with information on
associations and dependences that exist between genes.
We have developed NEAT, a test for network enrichment analysis that
aims to overcome some limitations of the resampling-based tests of Alex-
eyenko et al. (2012) and McCormack et al. (2013). First of all, we believe
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that a normal approximation does not make justice to the discrete nature of
NAB . We have showed that this approximation can be avoided, if one mod-
els NAB with the hypergeometric distribution. In addition, existing NEA
tests require the computation of many network permutations: this opera-
tion can be highly time consuming, slowing down computations consider-
ably. NEAT, instead, fully specifies the null distribution of NAB without
resorting to permutations, thus speeding up the computation of the test.
A further drawback of existing resampling-based tests is that they have
been implemented only for undirected networks: we address this problem
proposing two different parametrizations for NEAT, that take into account
the different nature of directed and undirected edges.
The test is implemented in the R package neat, which is freely available on
CRAN (Signorelli et al., 2016). Our simulations show that NEAT behaves
well under the null hypothesis, is more powerful and faster than existing
NEA tests. Application to the Environmental Stress Response data shows
that NEAT can detect most of the enrichments that were found with GEA
methods, and unveils further enrichments that would be overlooked, if de-
pencences between genes were ignored. We believe that NEAT could con-
stitute a flexible and computationally efficient test for network enrichment
analysis. Potential applications of NEAT extend beyond gene regulatory
networks, and include social networks, brain networks and other situations
where one attempts to understand the relation between groups of vertices
in a network.
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1 Introduction

Variable selection in high-dimensional settings where the number of ex-
planatory variables p is possibly larger than the sample size n has been
a challenging problem in recent applications such as Genomics or Text
Categorization. Many different methods have been proposed to solve the
variable selection problem in a generalized linear model (GLM) set-up.
The classical approach to the variable selection problem is to come up
with a selection criterion and to solve the resulting optimization problem.
Selection criteria include, among many others, the Akaike Information Cri-
terion AIC, the Bayesian Information Criterion BIC and the recently pro-
posed Extended Bayesian Information Criterion EBIC (Chen and Chen
(2008)), which particularly aims at high-dimensional settings. Chen and
Chen (2012) show that under moderate conditions EBIC is a consistent
variable selection procedure for a GLM if p = O(nk), k > 0. The chal-
lenging problem with these `0-type selection criteria is that the resulting

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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combinatorial optimization problems are in general very difficult to solve if
there are many possible explanatory variables p, since there are 2p possible
models for which the criterion has to be evaluated in a full enumeration.
In the 90’s the focus shifted from solving discrete optimization problems to
solving continuous, convex optimization problems, which actually could be
solved. It was Tibshirani (1996) who promoted the use of the famous Lasso,
which solves a convex optimization problem with an `1-penalty on the
regression coefficients and then selects those variables whose corresponding
regression coefficients are non-zero in the optimal solution. A big drawback
of `1-regularization methods like the Lasso is that they typically require
strong conditions on the design matrix X to be variable selection consistent
(see e.g. Zhao and Yu (2006)).
Another general problem of criterion based procedures is that per se they
do not provide any information about the uncertainty concerning the best
model. In fact one observes that the optimal Lasso solution is not very sta-
ble with respect to small changes in the sample. Therefore Meinshausen and
Bühlmann (2010) propose a procedure called stability selection. It is based
on the idea of applying a given variable selection method (e.g. the Lasso)
multiple times on subsamples of the data. Finally one selects those explana-
tory variables whose relative selection frequencies exceed some threshold.
The subsampling scheme is to draw a set I of size

⌊
n
2

⌋
without replacement

from {1, . . . , n} and then consider the model adjusted to the rows in I.
Even though the stability selection procedure has nice theoretical properties
and seems to become more and more popular in practice, one might ask
whether it is the best thing that can be done in a high-dimensional situation
where the sample size n is typically in the tenths or small hundredths
and p > n. Note that stability selection successively applies a possibly
inconsistent selection procedure like the Lasso on even more severe high-
dimensional problems with p �

⌊
n
2

⌋
. In contrast, the main idea of the

proposed adaptive subspace method is to successively apply a consistent
model selection procedure (like EBIC) on data with original sample size n
and a subset of the p covariates of size less than n.
So the ideology behind the adaptive subspace method can be summarized
as: “Solve a high-dimensional problem by solving several low-dimensional
ones.” Two issues naturally arise in this regime: Which low-dimensional
problems should be solved? And how can the information from the solved
low-dimensional problems be combined in order to solve the original prob-
lem? The proposed algorithm addresses these two issues using a certain
form of adaptive learning.

2 The Adaptive Subspace Method

We introduce some general notation in a setting with a criterion-based
variable selection procedure. We denote the set of explanatory variables by
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{Xj ; j ∈ P} with index set P = {1, . . . , p} and denote the corresponding
model space by M = P(P) = {S ⊆ {1, . . . , p}}. Let C : M → R be any
model selection criterion. We assume w.l.o.g. that we want to find the model
S∗ ∈M that maximizes the given criterion C, i.e. S∗ := arg maxS∈M C(S).
Examples include posterior model probabilities (within the Bayesian set-
up) or the negative EBIC (within the `0-penalized criteria framework). Let

fC :M→M, fC(S) := arg max
S̃⊆S

C(S̃).

So for a given S ⊆ {1, . . . , p}, fC(S) is the best model according to criterion
C among all models included in S. We assume w.l.o.g. that C(S) 6= C(S′)
for all S, S′ ∈M with S 6= S′, so that fC is a well-defined map.
Now suppose we have observed some data D = (X,Y ) and we want to
identify the best model S∗ = arg maxS∈M C(S) according to criterion C
for a GLM. As explained above, the basic idea of the adaptive subspace
method is to solve many low-dimensional problems (i.e. compute fC(V ) for
many V ∈ M with |V | relatively small) in order to solve the given high-
dimensional problem (i.e. compute S∗ = fC(P)). More precisely, the steps
of the adaptive subspace method are given by:

(1) Initialize the expected size q of the low-dimensional problems to be
considered at the beginning, i.e. q ∈ [1, p], as well as the adaptation
rate K > 0 and the number of iterations T ∈ N.

(2) For j ∈ P initialize r
(0)
j = q

p .

(3) For t = 1, . . . , T :

(a) Draw b
(t)
j ∼ Bernoulli(r

(t−1)
j ) independently for j ∈ P.

(b) Set V (t) = {j ∈ P; b
(t)
j = 1}.

(c) Compute S(t) = fC(V (t)).

(d) For j ∈ P update r
(t)
j =

q+K
∑t
i=1 1

S(i) (j)

p+K
∑t
i=1 1

V (i) (j)
, where 1A denotes the

indicator function of a set A.

So the adaptive subspace method is a stochastic algorithm which sam-
ples a subset V (t) ⊆ P in each iteration t. The probability that j ∈ P
is included in V (t) is given by r

(t−1)
j . The selection probabilities r

(t)
j are

adapted after each iteration t. Note that we implicitly assume that it is
computationally feasible to compute S(t) = fC(V (t)) in each iteration t. In
fact, if the underlying “truth” is sparse, |V (t)| is expected to be relatively
small. Otherwise, if |V (t)| is bigger than some computational upper bound
UC , one might replace V (t) by a subsample of V (t) of size UC . Alterna-
tively one might use heuristic algorithms in place of a full enumeration.
In principle, there are two different choices for the final subset selected by
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the algorithm after iteration T . One can choose the “best” sampled model
Ŝb for which C(Ŝb) = max{C(S(1)), . . . , C(S(T ))}, or one can consider

Ŝρ = {j ∈ P; r
(T )
j > ρ} with some threshold ρ ∈ (0, 1).

The evolution of the algorithm can formally be described by a Markov
chain. So the adaptive subspace method is in fact nothing else than a
Markov Chain Monte Carlo (MCMC) method. The fundamental differ-
ence in comparison to standard MCMC algorithms is that instead of sam-
pling from the (unknown) posterior distribution, the adaptive subspace
method constructs a Markov chain which converges (in a sense and un-
der conditions that need to be specified) to the (unknown) true solution
S∗ = arg maxS∈M C(S) of the optimization problem.
Furthermore, the adaptive subspace method can be viewed as a form of
Bayesian learning. Let πj denote the subjective belief that variable Xj is in
the best model S∗ with respect to some criterion C. Note that under knowl-
edge of S∗ = arg maxS∈M C(S), in fact πj has a Dirac distribution con-
centrated at 1 if j ∈ S∗ or concentrated at 0 if j /∈ S∗. But since we cannot
solve the high-dimensional optimization problem exactly, we sequentially
solve low-dimensional problems of the form S(t) = arg maxS⊆V (t) C(S) and
sequentially update our belief πj about variable Xj . This process can be
viewed as an adaptive experimental design where in each step we set up the
design with explanatory variables given by V (t) and observe “new” data
D(t) = (X|V (t) , Y ). Using an appropriate beta-prior for πj , one can interpret

r
(t)
j as the (pseudo) posterior mean of πj after observing D(1), . . . ,D(t).

3 Simulation Study

Relatively low-dimensional (p ≤ 40) simulation studies using BIC as a
selection criterion in linear models show that in many cases the adaptive
subspace method indeed identifies the best model according to BIC. We
illustrate the performance of the algorithm in the special design case of
equal underlying correlation c ∈ (0, 1) between the explanatory variables.
Let p = 40 and n = 100. We simulate X = (Xij) ∈ Rn×p with i-th row
Xi· ∼ Np(0,Σ), where Σkl = c for k 6= l and Σkk = 1 for k = 1, . . . , p. For
each c ∈ {0.1, 0.3, 0.5, 0.7, 0.9} we simulate 100 datasets in this way. Fur-
thermore let β0 = (1,−1, 1, 2,−2, 2, 0, . . . , 0)T ∈ Rp be the true underlying
vector of coefficients, so that the true active set is S0 = {1, . . . , 6}. The
response Y = (Y1, . . . , Yn)T is simulated via Yi ∼ N(Xi·β0, σ

2) with vari-
ance σ2 = 4. In the adaptive subspace method we initialize q = 10, K = p
and T = 1000. We use the “leaps and bounds” algorithm implemented in
the R-package “leaps” (Lumley and Miller (2009)) to compute at iteration
t the best model S(t) according to BIC contained in V (t).
The results of the adaptive subspace method are shown in Table 1, where
we compare Ŝ0.9 (with threshold ρ = 0.9) and Ŝb with the best possible BIC
model S∗ found by “leaps and bounds” when applied to the full dataset.
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The adaptive subspace method identifies the best BIC model (Ŝb = S∗) in
most of the cases. Moreover, we often have Ŝ0.9 = S∗, while interestingly
Ŝ0.9 selects on average less false positives than the best BIC model S∗ itself
(at the price of a slightly increased mean of false negatives, if c is large).
The computational time of the adaptive subspace method, without aiming
for optimal code, is a few seconds (max. 5 sec.) for each dataset, while full
enumeration with “leaps and bounds” needs up to 1 min. for c = 0.9.

TABLE 1. Low-dimensional simulation study (p = 40 with 100 simulated
datasets for each design with correlation c). Comparison of Ŝ0.9 and Ŝb found by
adaptive subspace method with best BIC model S∗ in terms of mean numbers of
false positives and false negatives, as well as the percentage of cases where they
agree.

mean false positives mean false negatives % of agreement

c Ŝ0.9 Ŝb S∗ Ŝ0.9 Ŝb S∗ Ŝ0.9 = S∗ Ŝb = S∗

0.1 1.47 1.76 1.92 0.05 0.03 0.03 0.82 0.93
0.3 1.25 1.53 1.62 0.09 0.08 0.09 0.85 0.95
0.5 1.27 1.73 1.81 0.41 0.37 0.36 0.74 0.94
0.7 1.40 1.66 1.71 1.20 1.07 1.07 0.76 0.96
0.9 1.21 1.72 2.03 2.85 2.71 2.60 0.58 0.82

Furthermore, we have investigated sparse high-dimensional linear models
via simulation and observe that in many situations the adaptive subspace
method with EBIC performs very well in terms of finding the “true” un-
derlying variables when we compare it to algorithms like stability selec-
tion with Lasso. The presentation of the results of an extensive simulation
study comparing the proposed adaptive subspace method with different
well-established algorithms is beyond the scope of this article.
As an illustration for the effectiveness of the adaptive subspace method, the
evolution of the algorithm is displayed in Figure 1 for a high-dimensional
dataset that is generated in the same way as above with moderate corre-
lation c = 0.3 and with p = 500 instead of p = 40. We use the adaptive
subspace method with EBIC (with constant γ = 0.5) as a selection cri-
terion and initialize q = 10, K = p and T = 2000. In this example, the
adaptive subspace method yields Ŝ0.9 = Ŝb = {1, 3, 4, 5, 6}, i.e. we have one
false negative variable and no false positives. Figure 1 shows exemplarily

the convergence of r
(t)
1 and r

(t)
3 against 1 and the convergence of r

(t)
2 and

r
(t)
7 against 0. The convergence is very fast, with the algorithm taking 5.5

sec. for T = 2000 iterations.

4 Discussion

It is desirable to theoretically understand the limiting properties of the pro-
posed adaptive subspace method and to find sufficient conditions for the
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FIGURE 1. Adaptive subspace method for high-dimensional example (p = 500,
correlation c = 0.3, true active set S0 = {1, . . . , 6}). Plot of the evolution of

r
(t)
1 , r

(t)
2 , r

(t)
3 , r

(t)
7 along the iterations t.

“correct convergence” of the algorithm, where by “correct convergence”

it is meant that r
(t)
j → 1 (a.s.) if j ∈ S∗ and r

(t)
j → 0 (a.s.) if j /∈ S∗, as

t→∞. Recently, we have found a simple sufficient condition which ensures
the correct convergence of the algorithm in the above sense. We are cur-
rently investigating, in which particular situations this condition is satisfied
and how it might be relaxed in order to find weaker sufficient conditions.
The theoretical details will be addressed in a subsequent paper. However,
simulation studies indicate that even when such sufficient conditions do
not hold, the algorithm provides useful information about the underlying
variable selection problem and can be valuable as a heuristic algorithm for
tracing well-fitted models.
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Abstract: In multiple-tissue experiments, gene expression is measured across
multiple tissues for each subject. For each subject, the data measurements can
be written as a matrix with the different multiple tissues indexing the columns
and the genes indexing the rows. In this context, neither the genes nor the tissues
are expected to be independent and straightforward application of traditional
statistical methods that ignore this two-way dependence structure might lead to
erroneous statistical conclusions. We present a non-parametric set of statistical
tools for conducting inference in multi-tissue gene-expression studies.

Keywords: High-dimensional data; Hypothesis testing; Estimation; Gene ex-
pression data.

1 Introduction

Consider biological studies that use microarrays to study gene expression
patterns in multiple tissue samples taken from the same subject (e.g., Melé
et al., 2015; Piccirillo et al., 2015 and Sottoriva et al., 2013). For each sub-
ject, the row variables correspond to genes, the column variables to tissue
samples and the measurements are gene expression levels. A complex and
high-dimensional dependence structure is expected to occur as neither the
genes nor the tissue samples are likely to be independent. From a statisti-
cal perspective, it is extremely important to acknowledge both sources of
correlation while keeping a parsimonious representation for the dependence
structure so as to ease the key inferential purposes regarding the tissue- or
gene- wise correlation pattern.
To this direction, the matrix-variate distribution can be utilized. We say
that the random matrix X follows a matrix-variate normal distribution with
matrix parameters M, ΣR and ΣC if its vectorized form, vec(X), follows a

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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multivariate normal distribution with mean vector vec(M) and covariance
matrix the Kronecker product ΣC⊗ΣR, where ΣR and ΣC are recognized
as the row and column covariance matrix. Thus the covariance structure of
the elements of a typical random matrix X that follows the matrix-variate
normal distribution is given by the Kronecker product model:

Cov(Xij , Xlm) = ΣRil ΣCjm.

Application of the matrix-variate normal model to multiple tissue gene ex-
periments that measure gene expression, implies that the inference about
the mean relationship of the genes across the tissues and about the depen-
dence structure relies on estimating and/or testing hypotheses the mean
matrix M, the gene covariance matrix ΣR, and the tissue covariance ma-
trix ΣC. In this context, the (a, b)-th element of M determines the mean
expression level for gene a in tissue b, the (c, d)-th element of ΣR the co-
variance of genes c and d, and the (e, f)-th element of ΣC the covariance
of tissues e and f .
Despite the nice interpretation, the normality assumption and the lack of
statistical methods for estimating and hypothesis testing in high-dimensional
settings could discourage researchers from employing the matrix-variate
normal model. Herein, we present a non-parametric extension of this model
that addresses these two challenges while maintaining the Kronecker prod-
uct assumption about the dependence structure.

2 Inference based on a simple non-parametric model

Suppose that the gene expression levels for subject i are recorded in an r×c
matrix Xi with rows the same set of r genes and columns the same set of
c tissues. Let X1, . . . ,XN be a sample of N i.i.d. r × c random matrices
generated by the non-parametric model

Xi = Σ
1/2
R ZiΣ

1/2
C + M, (1)

where M = E[Xi] is the r × c mean matrix, Σm = Σ
1/2
m Σ

1/2
m is a positive

definite matrix (m ∈ {R,C}) and {Zi : i = 1, . . . , N} is a sequence of i.i.d.
r × c random matrices. The random variables {Ziab : a = 1, . . . , r and b =
1, . . . , c} within Zi are assumed to be independent with mean zero, unit
variance and finite eighth moment. Model (1) includes the matrix-variate
normal distribution as a special case obtained if Ziab are i.i.d. N(0, 1) ran-
dom variables. Since cov[vec(Xi)] = ΣC⊗ΣR, we will refer to ΣR and ΣC

as gene- and tissue- covariance matrix respectively.
To manage the high-dimensional setting, we assume that as N → ∞ and
rc→∞

tr(Σ4
R)

tr2(Σ2
R)
→ 0 and

tr(Σ4
C)

tr2(Σ2
C)
→ 0. (2)
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Assumption (2) does not specify the pairwise limiting ratios of the triplet
(N, r, c), which allows us to consider data from multiple tissue gene ex-
pression studies. Options for ΣR and ΣC include covariance matrices with
eigenvalues bounded away from 0 and ∞ or that have a few divergent
eigenvalues as long as they diverge slowly, and thus the class of depen-
dence structures under consideration is not seriously limited. Therefore,
model (1) and assumption (2) constitute a flexible working framework to
model multiple tissues gene expression studies in a non-parametric fashion
while maintaing the same interpretation of the three matrix parameters as
if the data were generated from a matrix-variate normal distribution.

2.1 Inference about the mean relationship

In multi-tissue studies, it is often of interest to identify differentially ex-
pressed genes. For example, one needs to assess whether the overall mean
pattern of gene expression levels remains constant across all or pre-specified
tissue groups. This amounts to testing the general hypothesis

H0 : M = M0 ≡ [µ11
T

c1 , µ21
T

c2 , . . . , µg1
T

cg ] vs. H1 : M 6= M0 (3)

for known positive integers c1, . . . , cg such that
∑g
q=1 cq = c with at least

one cq ≥ 2 and for g (fixed but arbitrary) unknown parameter vectors
µ1, . . . , µg. For example, testing conservation of the mean gene expression
across all tissues implies that c1 = c. Touloumis et al. (2015) developed a
statistical procedure for testing (3) which appeared to be more powerful
that traditional ANOVA-type tests after applying multiple testing correc-
tions. From a practical point of view, the null hypothesis in (3) would
be dictated by the experiment’s design. For example, in Piccirillo et al.
(2015), one objectives was to investigate whether the mean gene-expression
in glioblastoma patients was conserved in 5 different tumor fragments but
varied from that in a normal tissue and from that taken from a subventric-
ular zone tissue (that is c1 = 5, c2 = c3 = 1).
The testing procedure proposed by Touloumis et al. (2015) can be also
applied to a subset of genes or to the row mean vectors in order to obtain
a more parsimonious form for M than the fully unstructured. Once the
plausible form of M is induced, the mean relationship can be estimated by
taking the corresponding sample analogue.

2.2 Inference about the covariance matrices

Estimation of ΣR and ΣC relies on shrinking approaches that extend the re-
sults of Touloumis (2015) for vector -valued random variables. Touloumis et al.
(2016a) proposed the column covariance matrix estimator

Σ̂C = (1− λ̂C)
1

(N − 1)r

N∑
i=1

YT
i Yi + λ̂Cµ̂CIc
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and the row covariance matrix estimator

Σ̂R = (1− λ̂R)
1

(N − 1)tr(Σ̂C)

N∑
i=1

YiY
T
i + λ̂RIr

where Yi = Xi − M̂, Ik is the identity matrix of size k, and where the
exact formulas for 0 ≤ λ̂C ≤ 1, 0 ≤ λ̂R ≤ 1 and µ̂C can be found in
the Supplementary Material in Touloumis et al. (2016a). These shrinkage
estimators are easy to calculate regardless the number of genes and tissues
and are expected to be useful in the construction of relevance networks for
genes and/or tissues (see Schäfer and Strimmer, 2005).
To study the correlation patterns of genes or tissues, Touloumis et al.
(2016b) developed testing methodologies to assess whether known covari-
ance structures are plausible (H0 : ΣR = Σ or H0 : ΣC = Σ for known Σ)
and to assess whether the genes or tissues are uncorrelated with the same
variance but differing mean vectors (H0 : ΣR = σ2Ir or H0 : ΣC = σ2Ic for
σ2 > 0).

2.3 Software availability

The R package HDTD (Touloumis et al., 2016a) implements the proposed
methodologies. The user can estimate the mean matrix (meanmat.hat), the
gene- and tissue- covariance matrix (covmat.hat) and conduct hypothesis
testing for the mean matrix (meanmat.ts) and either of the two covariance
matrices (covmat.hat).

3 Multiple tissue example

Melé et al. (2015) investigated variability in the human transcriptome
across multiple tissues by analyzing RNA sequencing. This study identi-
fied, among other things, genes whose expression signature characterized
particular tissues by using all available tissue-samples from each of the 175
individuals and comparing the gene expression levels of the tissue tested
and that of the remaining tissues. This approach does not acknowledge
the tissue-wise correlation and consequently, the discovery of tissue-specific
gene lists might be hindered. To check this, we considered a subset of this
dataset including only the subjects (N = 11) with available RNAseq sam-
ples across all the most frequently collected tissues (skin, nerve, adipose,
artery, lung, skeletal muscle, heart, blood and thyroid). A 44, 781× 9 data
matrix was created for each subject, with rows corresponding to genes,
columns corresponding to the samples from the nine tissues and entries
corresponding to the gene-expression levels. We focused on two important
inferential aspects: i) study of the dependence structure among the nine
tissues and ii) corroboration of the gene signatures when the dependence
between tissues is accounted for.
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TABLE 1. The estimated variances with a two letter abbreviations for the tissues.

SK NE AD AR LU SM HE BL TH

19123 16882 17523 17071 18244 27828 53881 757519 20445

To study the tissue specific variability and correlation pattern, we first
estimated the corresponding covariance matrix Σ̂C. The estimated vari-
ances diplayed in Table 1 indicate that blood was by far the most variable
tissue (ŜE = 870.4), with ŜE at least four times that of the other tis-
sues. We also observed that lung, heart, skeletal muscle and thyroid were
mildly correlated with each other (see Table 2), while the remaining tissues
showed weaker correlation. Although we rejected the spericity hypothesis
H0 : ΣC = σ2Ic (p-value<0.001) for all the tissues, we failed to reject the
hypothesis that skin, adipose and lung tissue are uncorrelated with the
same variation. There seems to exist a mild tissue-wise correlation which
Melé et al. (2015) did not consider in their analysis.
Melé et al. (2015) generated lists of genes that showed tissue-specific ex-
pression. For a given tissue, we tested the hypotheses of conservation of the
overall mean gene-expression levels of the corresponding genes-list between
this tissue and any of the other eight, leading to a total of eight p−values, to
which we applied an FDR correction. Failure to reject all hypotheses means
that we do not have enough evidence these genes to be tissue-specific in
their expression. After performing this analysis, we confirmed the validity
of the tissue-specific gene-lists for skin, nerve, lung, skeletal muscle, heart
and blood tissue. However, we failed to confirm that the overall mean gene-
expression levels of the thyroid-specific gene-list is different than in the
skeletal muscle (p-value = 0.782); that of adipose-specific gene-list differ-
ent in the skin (p-value = 0.105), and that of artery-specific gene-list is
simultaneously different from that of the skin, adipose and blood tissues
(p-value= 0.412). The difference in our conclusions compared to those in
Melé et al. (2015) presumably arises because the approaches used herein
account for the presence of the tissue-wise correlation.

4 Discussion

In future works, we aim to extend the mean matrix hypothesis testing
procedures to unbalanced designs i.e., when gene expression data are not
collected across the same number of tissues for each subject, to develop
a test statistic for assessing the Kronecker product assumption for the
dependence structure and consider additional flexible but still parsimonious
ways to model the dependence structure.
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TABLE 2. The estimated tissue-wise correlation matrix.

SK NE AD AR LU SM HE BL TH

SK 1.00 0.03 0.01 0.03 0.03 0.05 0.09 0.00 0.06
NE 0.03 1.00 0.03 0.05 0.04 0.09 0.09 0.00 0.06
AD 0.01 0.03 1.00 0.03 0.02 0.03 0.04 0.00 0.03
AR 0.03 0.05 0.03 1.00 0.05 0.09 0.08 0.00 0.06
LU 0.03 0.04 0.02 0.05 1.00 0.13 0.18 0.03 0.10
SM 0.05 0.09 0.03 0.09 0.13 1.00 0.34 0.00 0.15
HE 0.09 0.09 0.04 0.08 0.18 0.34 1.00 0.01 0.29
BL 0.00 0.00 0.00 0.00 0.03 0.00 0.01 1.00 0.04
TH 0.06 0.06 0.03 0.06 0.10 0.15 0.29 0.04 1.00

Acknowledgments: This research was based on collaborations with Prof.
Simon Tavaré and Dr. John C. Marioni.
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Abstract: In this paper, we describe a novel shape classification method which is
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shape classification algorithm for two and three dimensional data shapes. We
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1 Introduction

Shape is an important feature of objects; it can be used in many applica-
tions such as the recognition and classification of objects in images. In the
approach we take we represent such objects and their boundaries as con-
tinuous planar curves (i.e. one-dimensional lines which denote the outline
of the object) and study their shapes. Our goal is to develop shape mod-
els, statistical procedures and classification methods of continuous planar
shape curves and establish the statistical framework needed for their clas-
sification. In particular, we study how to classify shapes that are generated
by such curves and how we can probabilistically assign them into their re-
spective categories; given a set of pre-determined classes we would like to
classify the observed data shapes – we here define a data shape y to be
one of the shapes that we observed i.e. an ordered set of points in R2 or R3.
These questions occur in many applications of shape modelling and image
analysis and thus are of broad interest.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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2 Modelling and classification

The problem of classification can be mathematically formulated as the pos-
terior probability of the class in question given the observed data; that is
by P(C|y) where C ∈ C the set of all classes of the object and y ∈ Y the
set of all the observed data shapes. In a Bayesian framework, classification
is performed by maximising the posterior probability of the class which
by Bayes’ theorem is: P(C|y) ∝ P(y|C)P(C). For simplicity we choose the
prior P(C) over the classes to be uniform although it can be freely chosen.
The major task is then to calculate the likelihood which we partition over
nuisance parameters that correspond to the data formation process. For
this, the model assumes that any data shape y has arisen by a representa-
tive shape curve β ∈ B ≡ Rm×n/(Rm × (R+ × SO(m))), which has been
translated, scaled and rotated by g ∈ G ≡ Rm n (R+ × SO(m)) and has
been sampled by a sampling function s ∈ S. The inherent observational
noise σ has perturbed the points from their original position and thus a
bijection b : [1, ...n]→ [1, ...n] compares the data points of y uniquely to the
data points of β. The likelihood will be marginalised and finally be invari-
ant to all the mentioned transformations. For our applications we choose
the observational model to represent errors in shape point collection as ad-
ditive Gaussian white noise so that the likelihood function for the complete
data is given by:

P(y|C) =
∑
b∈B

∫
Dβ Ds Dg dσ P(b)P(s)P(g)P(σ)P(β|C)

× exp

(
− 1

2σ2

n∑
i=1

|yi − g ◦ β(s(b−1
i ))|2

)
(1)

with a number of simplifying independence assumptions made. In order to
estimate the posterior probability of a class, one should evaluate the sums
and integrals over the nuisance parameters. In the next sections we discuss
our computational strategies for dealing with these evaluations for both
two and three dimensional shape data.

3 The two dimensional case

Our main goal is to evaluate the integrals in expression (1) and thus per-
form Maximum a Posteriori (MAP) classification to a certain class given
the data. In previous work, e.g. Dryden and Mardia (1998) and Srivastava
and Jermyn (2009) the integrations over the nuisance parameters were eval-
uated numerically by a zeroth order Laplace approximation. In Tsiftsi et al.
(2014) we introduced an analytic way of carrying out the group integrations
and the integrations over σ resulting in a closed form expression.
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To achieve that, we made an appropriate and statistically significant choice
of priors. Initially, we used Jeffreys’ joint prior for g ∈ G ≡ R2 n (R+ ×
SO(2)) and σ which preserves the invariance of the posterior under simi-
larity transformations. However due to induced divergences a regularized
version was employed. Although this broke the invariance of the original
posterior, the result of this integration was found to be:

P(y|b, β, s) =
1

Z

∑
b∈B

∫
Dβ Ds

ñṼar(y)−
ñ2
∣∣∣ ˜Cov(v,y)

∣∣∣2
ñṼar(v) + 1/B2

+ 2ζ


−n−α

× P(b)P(s)P(β|C)
(2)

where ñ = nD
n+D , whilst B,α, ζ,D are appropriate regulators, Z is the

normalisation constant, n the number of sample points and ˜Cov(v,y) =
1
ñ

[∑
i viȳi −

1
ñ

∑
i

∑
j viȳj

]
. For details regarding the priors and the calcu-

lations refer to Tsiftsi et al. (2014). The proposed algorithm returns high
classification rates. To demonstrate its ability and power we present an
example on two shape databases in section 5.

4 The three dimensional case

Another problem of interest is the generalisation of the previous case to
its three dimensional equivalent by assuming that y ∈ R3. The three di-
mensional case is treated in a similar way as the two dimensional case:
our goal is to classify a shape by performing MAP on the class C. We
follow the same steps as in the two-dimensional case and we marginalise
the likelihood over the nuisance parameters that take part in the data for-
mation process; however similarity transformations are now represented by
g ∈ G ≡ R3 n (R+ × SO(3)) since y ∈ R3.

The challenge is the analytic evaluation of the integrals of the marginalised
likelihood and especially the integration over three-dimensional rotations.
Initially, translations were integrated against the uniform Haar measure.
The result, as expected, was analogous to the two dimensional case and had
to be integrated with respect to rotations. For this integration, we chose
to represent rotations as unit quaternions; the full quaternionic space is
described by: H = {a + bi + cj + dka, b, c, d ∈ R} with i, j, k the three
special unit imaginary quaternions. The basis quaternions anti-commute
and they provide a representation of SU(2).

For the integration over quaternions, we choose to integrate over the full
quaternionic space R4, imposing the constraint δ(|q|2 − 1) which restricts
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us to unit quaternions that live on the surface of the unit 4-sphere. This
δ-function is invariant under the action of SU(2) on the parameters since
rotations act by isometries. Carrying out this integration one has:

P (y|b, β, s, σ)=

∫
d4q δ(|q|2−1) exp

(
|
∑N
i Yi|2

2nσ2
−
∑N
i |Yi|2

2σ2

)
(3)

where Y = y − qβq∗ with q a unit quaternion and q∗ its quaternionic
conjugate. To perform the integration, we represent the δ-function via its
Fourier transformation which introduces a second integration that can be
simplified to:

P (y|b, β, s, σ)=

∫∫
dk d4q exp

(
ik(|q|2−1)

)
exp

(
|
∑N
i Yi|2

2nσ2
−
∑N
i |Yi|2

2σ2

)

=
1

2π

∫∫
dk d4q exp (−ik) exp

(
−4n [qTM(k)q]

)
(4)

where

Mij(k)=−ikδij − δ0i(v̂T × ŷ)i−(1−δ0j)(1− δ0i)
[
(ŷ ⊗ v̂)ij−δij(v̂T × ŷ)

]
is the symmetrised, positive definite 4× 4 covariance matrix of the q com-
ponents. We now discuss the integral over the quaternionic parameters that
generate the SO(3) rotations. We followed Wood (1993) and calculated the
appropriate Haar measure for the quaternionic representation which was
proven to be related to the Bingham distribution. The result of integrat-
ing over k will supply the Haar measure on the space of unit quaternions
and restrict our parameters q to this surface. Indeed, we could rewrite the
integration over rotations by diagonalising M to give:

∫
SO(3)

exp
(
−4n [qTM(0)q]

)
=

∫
S3

exp

(
−4n

∑
i

λiq̃
2
i

)
d[q̃] (5)

where λi the eigenvalues of the covariance matrix M(0). Here, the q̃i gen-
erate rotations in SO(3) which are uniformly distributed if and only if
the q̃i are uniform on a unit hemisphere in R4 so that the usual uniform
measure on S3 for d[q̃] induces the Haar measure on the space of rotations.
This ensures that the chosen measure in (4) is the appropriate one that
favours no particular rotation over another.

Returning to expression (4), it is easy to see that the integral with re-
spect to q refers to a multivariate Gaussian distribution. Assuming that
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the eigenvalues of matrix M are positive the evaluation of the quaternionic
integral of this multivariate Gaussian distribution is:

P (y|b, β, s, σ) =
1

2π

∫∫
d4q dk exp (−ik) exp

(
4n [qTM(k)q]

)
∝ 1

2π

∫
dk exp (−ik)

4 n π2√
det(M)

(6)

with det(M) the determinant of matrix M which has k dependence, the
result of which integration is invariant to rotations of y since it has been
written in a manifestly rotationally invariant way. One may hope to eval-
uate integrals of this form by contour integration. For this we would have
to promote k to the complex plane and choose an appropriate path in the
k-plane. Since the expression of the determinant is not a perfect square,
the presence of the square root in the denominator implies that the roots of
the determinant produce branch cuts and we were thus unable to compute
the integral over k analytically.

We were therefore forced to expand the square root in the denominator of
expression (6) in order to analytically approximate the integral. However,
this represents an important step towards generalising our work on planar
shapes to three-dimensional curves. The calculations of the integration of
the remaining nuisance parameters are challenging, although positive devel-
opments have been made towards a series solution. We leave the remaining
calculation for future consideration as an extension of the analysis presented
here. This work is still in progress but shows promising signs of improving
upon the current shape classification methods in three-dimensions.

5 Example in two-dimensions

In order to test and verify the algorithm’s efficacy on the classification of
two-dimensional data shapes examples from two shape databases were con-
sidered: the Kimia and a simulated letter database. In the latter case the
application of our algorithm comes with a warning; ordinarily the orienta-
tion of letters is crucial (for example W versus M and C versus U) whereas
our likelihood has been constructed to be invariant under rotations of the
data. The tests on this database should therefore be understood as a general
test of our algorithm which is used for demonstrational purposes.

Both databases were comprised of binary images which were used for train-
ing and testing purposes. The shapes’ boundaries were extracted in MAT-
LAB and simulated shapes played the role of the observed data sets. The
proposed algorithm was tested on the simulated data sets and its classifi-
cation results are very positive, as is illustrated in Figure 1.

For the Kimia database we found that for 10 simulations of 10 shapes
each, the average classification level was µ̂ = 59% ± 7% with the average
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success rate being µ̂ = 80% ± 5%. From these experiments we concluded
that the number of sampled points is crucial since as soon as the number
of points increases to more than 50 the confidence levels become almost 90
percent. For the alphabet database, the results for the average classification
level were µ̂ = 77%± 5% with the average success rate µ̂ = 73%± 6%. The
evaluation of the performance of the algorithm in three-dimensions could be
tested by using examples from 3D geological sand formations as previously
discussed in Tsiftsi et al (2014).

FIGURE 1. Classification results for a Kimia shape and the letter E.
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1 Introduction

Joint Models (JM) as a term has been used in various contexts to describe
modeling of a combination of different outcomes. This contribution deals
with JMs for longitudinal and survival model outcomes like investigated
by Rizopolous (2012). We stumbled across this problem when analysis lung
function decline in cystic fibrosis patients. It has been shown that the onset
of pulmonary infections implies the acceleration of the loss of lung func-
tion, when using the onset of infection as a covariate in a longitudinal model
(Qvist et al. 2015). This onset however, could be seen as a process influ-
enced by the same covariates as the lung function decline itself and hence
should be modeled as a related yet separate process. Since the standard
approaches to JM do not include variable selection, we suggest a boosting
algorithm to tackle this problem. Boosting as statistical estimation ap-
proach has gained much attention since it is not only able to estimate a

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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range of different effects but also includes shrinkage and variable selection.
For an introduction and overview see Mayr et al. (2014).

2 Methods

2.1 Joint Modeling

The type of JM we are presenting is composed of two parts: the longitudinal
and the survival outcome. In the following we will describe predictors and
associated likelihoods. The predictor for the longitudinal outcome yit is
divided into two parts

yit = ηli(t) + ηlsi(t) + εit,

where i = (1, . . . , n) refers to the i-th individual, t = (t1, . . . , tni) to the
time of the observation and εit is the model error, which is assumed to
follow a normal distribution. The two functions ηli(t) and ηlsi(t), which
will be referred to as the longitudinal and the shared predictor in the fol-
lowing, are functions of two separate sets of covariates. In the boosting
context they are constructed as sums of base learners, which are functions
of potentially influential variables xi and the time t. The shared predictor
ηlsi(t) reappears in the survival part of the model:

λ(t|α, ηlsi(t)) = λ0(t) exp(αηlsi(t)),

where λ0(t) is the baseline hazard which will be chosen to be constant
(λ0(t) = λ0). The predictor with subscript ls refers to both, longitudinal
and survival part of the model, whereas we assume that ηl only has an
impact on the longitudinal structure. The relation between both parts of
the models is quantified by the association parameter α. Those two models
can be summarized in one likelihood:

n∏
i=1

∫ ∞
−∞


ni∏
j=1

f(zij |ηli(t), ηlsi(t), σ2
ε )

 f(Ti, δi|ηlsi(Ti), α)

 ,
where Ti is the time of event for individual i and where the distribution for
the longitudinal part the Gaussian. The likelihood for the survival part is:

f(Ti, δi|α, ηlsi(Ti), λ0) =

[λ0(Ti) exp(α(ηlsi(Ti)))]
δi exp

[
−
∫ Ti

0

λ0(u) exp(αηlsi(u))du

]
.

Here, δ is the censoring indicator, taking the value 0 in the case of censoring
and 1 in the case of an event.
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2.2 Boosting Joint Models

The above described situation differs in one key aspect from the problems
solved by boosting traditionally. The predictors for the different depen-
dent variables are neither entirely different nor completely identical. One
includes a function of the other. We suggest an update scheme at predictor
stage rather than at the level of the dependent variables. We hence need
an outer loop including three steps:

(step1) updating ηl(t) in a boosting iteration

(step2) updating ηls(t) in a boosting iteration

(step3) updating α and λ by maximizing the likelihood.

3 Simulation

3.1 Setup

Three different simulation setups were constructed. Two of them included
20 covariates per predictor, of which only two were informative. As an
additional parameter a time impact was entered into the shared predictor.
The association parameter was set to 0.5 in the first setup (S1) and to −0.5
in the second setup (S2). The third setup (S3) was constructed to mimic
the data situation more closely and to thus get a better sensation for the
ability of the algorithm to do variable selection in a lower dimension. S3
had only four non informative covariates in each predictor but did not differ
in any other features from S1. All three setups include random intercept
and slope:

ηl = Xlβl and ηls = Xlsβls + βtt+ γ0 + γ1t

The matrices Xl and Xls are the collections of the standardised covariates,
βl = (2, 1,−2)> and βls = (1,−2)> the corresponding linear effects, βt = 1
is the impact of time t, γ0 the random intercept and γ1 the random slope.
The time points were drawn in a way that mimics yearly examinations.
The longitudinal outcome y was drawn from a Gaussian distribution with
mean ηl+ηls. The survival times were simulated based on the joint predictor
multiplied by the association parameter αηls and the survival probabilities
resulting from the above described hazard function. Stopping parameters
for the boosting algorithm were selected by a tenfold cross-validation on a
ten times ten grid for the two sub-predictors.
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Setup βl(sd) βls(sd) P(βl = 0) (sd) P(βls = 0) (sd)

β0=1.982(0.116) 1.000(0.048)
S1 0.994(0.009) -2.000(0.053) 0.643(0.005) 0.782(0.015)

-1.995(0.009) βt=1.044(0.267)
β0=1.977(0.080) 1.001(0.048)

S2 0.993(0.010) -2.002(0.052) 0.435(0.039) 0.655(0.047)
-1.994(0.011) βt=1.058(0.173)

β0=2.061(0.102) 0.995(0.048)
S3 0.995(0.010) -1.984(0.048) 0.631(0.05) 0.897(0.044)

-1.996(0.009) βt=0.854(0.233)

TABLE 1. Estimations and selection proportions of the parameters in the three
setups. The estimation of the informative parameters are displayed individually,
the non informative parameters in an overall average. Also selection probability
is displayed in an overall average for the non informative parameters.

3.2 Results

Our algorithm performs good on our simulation studies and the predictors
ηl and ηls are captured just as well as in standard methods. The informative
parameters were selected in 100% of the runs in both sub predictors in all
three setups. Non informative parameters were selected in more than 50%
but less than 75% in all setups, for the exact proportions see TABLE 1.
The exact values of βl, βls and βt are estimated very well, for an overview
see TABLE 1 and FIGURE 1 for the exemplary display of the results from
S1. The estimation of the association parameter was less accurate for the
S2, than for S1 and S3, yet still close (see FIGURE 2).

4 Cystic Fibrosis

After choosing the patients that have at least two observations, before the
infection the data set contained a total of 6268 of 489 patients of which
53 were infected with PA in the course of the study. The covariates for
the longitudinal predictor were height and weight of the patient as well as
three binary covariates indicating, if the patient had one of three differ-
ent additional lung infections. The covariates possibly having an impact
on the shared part of the model were time, pancreatic insufficiency, sex,
age at which CF was diagnosed and birth year. The stopping iterations
(ml = 1100 and mls = 30) were chosen based on tenfold cross validation.
All parameters in the longitudinal predictor were selected. In the shared
predictor birth year, time and pancreatic insufficiency were chosen as infor-
mative covariates. The association parameter α = −0.380, the longitudinal
process is hence having a negative impact on the risk of being infected.
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FIGURE 1. Boxplot of the parameter estimates for S1

5 Conclusion and Outlook

The presented approach is to our knowledge the first variable selection
algorithm implemented in the joint modelling framework and hence an
important step especially for prediction. Simulations show a tendency to
incorporate also non informative variables with effects close to zero which
could be by stability selection. Furthermore we plan to complete the model
by incorporating a predictor ηs, i.e. including covariates which only have an
impact on the survival time and are independent of the longitudinal struc-
ture. Once this is incorporated, we can make even better use of the features
of boosting and implement variable selection and allocation between the
predictors (i.e. we give the same variables to all three predictors ηl, ηs and
ηls and let boosting decide, to which predictor the covariates belong).
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FIGURE 2. Boxplot of the estimates of α over all three setups
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Abstract: Chronic diseases are a growing public health problem and their eco-
nomic, social and demographic burden is alarming in years to come. Up to now,
the method used to make projections and assess the future disease burden as-
sumes a non-homogeneous Markov assumption in an illness-death model. Both
age and calendar time have been taken into account in all parameter estimations,
nevertheless the time spent with the disease was not considered. This work devel-
ops the method with a semi-Markov assumption to model mortality among the
diseased and considering the time spent with the disease. The method is applied
to estimate several health indicators for dementia in France in 2030.

Keywords: Multi-states model, Semi-Markov, Projection, Chronic disease.

1 Introduction

Currently, the high prevalence of some chronic diseases is a serious public
health problem (Brayne 2007). Furthermore, population ageing foreshad-
ows increases in their burden in the coming years. Dementia like Alzheimer’s
disease is one of these diseases of concern. Indeed, Jacqmin-Gadda et al.
(2013) suggest that the prevalence of dementia will reach 1.700 million in
2030 in France (rise of 75% in 20 years), and Brookemeyer et al. (1998)
project a 3.7 fold increase for the United State population between 1997
and 2047.
Up to now, multistate models based on Markov processes have been a
well-established method for modeling incidence and mortality for dementia
(Joly 2002), and macro-simulation is often used to provide health indicators

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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projections as prevalence (Hebert 2003; Wanneveich 2016). The transition
probabilities used in these models may depend on age and calendar time.
However, for many chronic diseases, mortality is likely to rise with disease
duration.
In this work, we propose an alternative to the model developed by Joly et
al.(2013) by introducing a semi-Markov approach to model the mortality
among diseased subjects and thus, to consider the time spent with the
disease to provide projections of several health indicators.

2 Methods

2.1 Illness-death model & semi Markov assumption

Figure 1 represents a three-state model called illness-death.

ν(a0, b)
0: non-diseased 1: diseased

2: dead

α01(t, b)

α02(t, b) α12(t, b, d)

-

J
J
JĴ







�

-

FIGURE 1. The illness-death model.

Initially all subjects are non-diseased (state “0”), then either they die (state
“2”) or they become diseased (state “1” ) and then die. Thus, the transition
intensity α01, is interpreted as the incidence rate, and α02 and α12 represent
the mortality among non-diseased and diseased subjects respectively. These
transition intensities depend on t the calendar time and b the year of birth
(so t−b is the age at time t) but α12 also depends on d the time spent with
the disease. Also, as input to the model, we define ν(a0, b) the size of the
population at risk to develop the disease at age a0 and born in b. Finally,
α2(t, b) denotes the overall mortality rate at time t for subjects born in b.
We focus on incurable chronic diseases and thus assume no reversible tran-
sition from diseased to non-diseased.

2.2 Assumptions

The method is based on several assumptions. First, the incidence is sup-
posed null before age a0 (the value of a0 depends of the disease). Then,
for mortality among non-diseased subjects, in most cases it is relevant to
distinguish it from the overall mortality: α02(t, b) 6= α2(t, b), especially
for diseases with high prevalence and high mortality. Lastly, for mortality
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among diseased subjects, we propose an additive model that takes into ac-
count age and time spent with the disease. Then, we write it as the sum
of mortality among non-diseased subjects added to an over-risk of death
depending on the time spent with the disease:

α12(t, b, d) = α02(t, b) + αd(d) (1)

2.3 Estimation of transition intensities

Cohort data are used to estimate the functions α01(t, b) and αd(d) by fit-
ting a non parametric illness death model with a penalized likelihood ap-
proach and spline approximation for each function. This method handles
semi-competing risks of disease and death and interval censoring of age at
disease onset. Demographic national projections provide values of α2(t, b)
and ν(a0, b), that will allow to consider the time trends for each mortality.
Then, α02 is estimated by solving a differential equation of the type: y′(s) =
c(s) − e−y(s)a(s), involving α2, α01 and αd. The resolution (for each year
of birth b) is analytic and allows to express mortality among non diseased
subjects with known quantities. Finally, α12 is estimated using the equation
(1).

2.4 Health indicators

Once the transition intensities have been estimated, we use the cumula-
tive transition intensities (between two ages) A01, A02, A12 to calculate
probabilities (by year of birth b):

• P00, the probability for subjects born in b and alive at age a0 to be
alive and non-diseased at age t− b:

P00(a0, t− b|b) = e−A01(a0,t−b|b)−A02(a0,t−b|b)

• P11, the probability for subjects born in b and diseased at age ad
(with ad > a0) to be alive at age t− b:

P11(ad, t− b|b) = e−A12(ad,t−b|b,d)

• P01, the probability for subjects born in b, alive and non diseased at
age a0 to be alive and diseased at age t− b:

P01(a0, t−b|b) =

∫ t−b

a0

e−A01(a0,u|b)−A02(a0,u|b)α01(u|b)e−A12(u,t−b|b,d)du

Then, these probabilities are used to calculate several relevant health indi-
cators for a given time t for projections (by year of birth b). We note:
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• LE00(x|b), the life expectancy without the disease at age x, which is
the remaining number of years that someone non-diseased at x can
expect to live without the disease.

• LE..(x|b), the overall life expectancy which is the weighted mean of
life expectancy for diseased and non-diseased subjects at age x.

• F01(x|b),the life-long probability of the disease which is the overall
risk of developing the disease before death for subjects of age x alive
and non-diseased.

• Prev(a0|t), the prevalence of the disease, which is the number of dis-
eased subject between a0 and 99 at time t.

3 Application on dementia in France

The French cohort PAQUID initiated in 1988 to study the aging popula-
tion, allows to estimate the dementia incidence (α01) and the over-risk of
death for demented subjects (αd). The sample consists of 3777 subjects
aged 65 years and older and it is representative of the French population in
terms of age and gender (Dartigues 1991). Based on this data, we hypoth-
esized that the incidence is homogeneous over calendar time (it depends
only on age) and null before a0 = 65. The French National Institute of
Statistics, INSEE, provides French demographic projections, including the
age- and sex-specific overall mortality (α2), and the population alive (ν)
at age 65 by gender for each year of birth. Lastly, mortality among the
non-demented (α02) depending on age and calendar time is computed by
analytic resolution of a differential equation for each years of birth b. Then,
mortality among the demented (α12) may be estimated.

Results, in particular on mortality among the demented depending on age
and time spent with dementia are presented as well as the changes of the
health indicators between 2015 and 2030. The discussion concern the choice
of the model and the perspectives.
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Abstract: For the problem of testing for zero–modification in Poisson regression,
a simple and intuitive test can be constructed by computing directly confidence
intervals for the number of 0’s under the Poisson assumption. This requires the
ability of estimating the mean function accurately even if the data are in fact
zero–inflated or deflated. A novel hybrid estimator is introduced for this purpose,
which is of interest beyond the scope of the motivating test problem.

Keywords: Zero–modification; zero–truncated model; hypothesis testing

1 Introduction

Commonly used tests for zero–inflation/modification are likelihood ratio,
score and Wald tests. Whilst these tests are all viable, they are not readily
understood by non–statisticians, they do not distinguish between zero–
inflation and zero–deflation (at least, not without adjustments), and they
rely upon asymptotic results. Wilson and Einbeck (2015) proposed a new
family of tests to test zero–modification in count data regression. Con-
sider data (yi,x

T
i ), i = 1, . . . , n, where yi are discrete counts and xi ∈ Rd

a predictor vector. Let pi = P (yi = 0). In the special case of (possibly
zero–modified) Poisson regression, this test can be summarized as follows.
For given significance level α: (i) fit the Poisson regression model, yielding
Poisson means µ̂i= Ê[yi|xi]; (ii) for each each yi estimate p̂i = exp(−µ̂i);
(iii) use a Poisson–Binomial distribution with parameters (n, p̂1, . . . , p̂n) to
determine a 1–α confidence interval for the number of 0’s.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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FIGURE 1. Left: Estimation from the zero-truncated and whole sample; right:
Function γ∗100(n0, 1) (thick curve) withMSE(T |n0) contours. In both plots, µ = 1
and n = 100.

20 25 30 35 40 45 50 55

0.
5

1.
0

1.
5

 

n0

es
tim

at
ed

 P
oi

ss
on

 m
ea

ns

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

● ●●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●
●

●
●

●●

● ●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

● ●

●
●

●●

● ●

●

●

●

●

●

●

●
●

●●
● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

● ●

●
●

●

●

● ●

●

●
●

●

●

●

●● ●

●

●

●●●

●

●
●

● ●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●●

●

●

●

●
●

●
●

●●

● ●

●

●

●

●

●●

●● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●●● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●
●

●●

●

● ●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●
●●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●
●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●
●

● ●

●

●
●

●

●
●

● ●●
●

●

●
●

●
●

● ●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●● ●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●●

●
●●●

●

●

●

●

●
●

●● ●

●●
●

●

●

●
●
●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●● ●●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●●●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●●

●

●

●●
●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●●
●

●

●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●● ●

●

●●

●

●

●
●

● ●

●
●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●
●

●

● ●●

●
●

●●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

● ● ●

●
●

● ●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
● ●

● ●

●
●

●

●

●

●

●
●

●

●●

●●

●

●●

●

●

●

● ●

●
●

●

●● ●

●

●

●

●

●

●

●●

●

● ● ●

●

●

●

●

●

●
●

●

● ●

●

● ●●

●
●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●●

● ●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

● ●●

●●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●●

●

●

●

●
● ●

●

●

●

●
● ●

●

●

● ●

● ●

●
●

●

●

●

●
●

●

●
●●●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

● ●

●●●

●

●

●
●
●

●

●

●●
●

●
● ●

●
●

● ●

● ●
●

●

●

●●

●
● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ● ●●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●
●

●●
● ● ●

●

●

●

●

●●
●●

●

●

● ●● ●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●
●

●

●

● ●

●

●
●

●●
●

●

●

●

●

● ●
●

●

●

● ●

●●
●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●●
●

●●

●

● ●

●

●

●

●

●

●
●

●
●

●●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●
● ●●

●

●●
●

●

●

●
● ●

●●

●

●

●

● ●

●

●
● ●

● ●

●

●
●

●

●

●

●

●
●

●

●

●●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●●

●
●

●

●●
● ●

●

●

● ●

●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●
●

●
● ●

●

● ●

●

● ●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●●●

●

●

●
●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●●●
● ●

●

●
●

●

●● ●

●

●

● ● ●●

● ●●

●
●

●

● ●

● ●

●

●

●
●

●

●

●

●

●
● ●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

● ●

●

● ●

● ●
●

●

● ●
●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●●●
●

●
●

●

●

●
● ●

●●
●

● ●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●
● ●

●

●

●

●
●

●
●●●

● ●
●

●

●

●
●

●

●
●

●

●

●
●

●
●●

●
●●

●

●

●● ●

●
●

●

●

● ●●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

● ●

●
● ●●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●●

●

●

●

●
●●

●

●
●

● ●
●●

●
●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

● ●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

● ●
●

● ●
●

●

●●

●

●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●●

● ●
●

●●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●
●

● ●

●
●

●

●

●

●●

●

●

●
● ●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●● ● ●

●

●

● ●●

●

●●

●●

●

●

●

●
●

●
●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●
● ●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●
●

●

●
●●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

● ●

●

●
● ●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●
●

●

●●● ●

●

●

●●
●

●

●●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

● ●

●

●

●●
●

●

● ●

●

●

●

●
●

● ●

●

●

●●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●●●

●

●

● ●●
●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●●

● ●

●

●

●

● ●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●
●

● ●

●

● ●

●● ●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●
●

● ●

●

●

●

●

●

●
●

● ●
●

●

●●
●

●

●

●

●

●● ●●
●

●

●

●

●

●●

●●

●

●

●

●●

●

●
●

●●
●

●
●

●

●

●

● ●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

● ●

●

●
●●

●

●

●
●

●
● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●● ●●

●
●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●● ●
●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
● ●●

●●
●

●

● ●●
●

●

●
●●

●

●

●

●

● ●

●
●●

●

●

●
●

● ●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●●●
●

●

●●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●●
●

●

●

● ●

●

● ●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●

● ●●

●

●
●

●

●

●

●
●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●●

●
●

●
●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●

●
●

●●

●

●

●

● ●

●

●

●

● ●
●
● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

● ●

●

●

●●●

●

●

●

● ●● ●●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

● ●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●●
●

● ●

●
●

●

●
● ●

●

●

●

●

●

●
●

●●
●

●

●

●

● ●

●

●
●●●

●●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●●

●
●
●●

●

●

●●

●

●
●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ● ●● ●
●

●

●

●

●
●● ●●●

● ●

●

●
●

●
●

●

●

●
●●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●
● ●

●
●

●

●
●

●●●

●
●

●

●

●

●● ● ●

● ●●

●

●

●●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
● ●

●

●

●

●

●
●

●

●
●

●

● ●●●

●

●

●●

●

●

●

●
●
●
●●

●●

●

●

●

●

● ●

●

●●
●

●

●

●●

●

●

●

● ●
●

●●

●

●

●

●

● ●●

●●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
● ●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

● ●
●●

●

●

● ●

●
●

●
●

●

●

●

●●

●
●

●

●
●

● ●

●

● ●

●● ●

●

●

●

●

●

●

●

●
●

●●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●
●

●

●●

●

●

●●
●

●
●●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●
●

●
●●

●

●

● ●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

● ● ●
●●

●

●

●●● ●●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●
●

● ●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
● ●

●

●

●

●●

●

●
●

●

●
●●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

● ●
●●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
● ●

●
● ●●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

● ●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●●

●

● ●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●●●

●●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●●

●

●

●
●

●

●
●

●

●
●

●
●

● ●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●
●

●

●
●

● ●

●

●

● ●

●

● ●

● ●

●

●

●

●
●

●

●● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●
●

● ●●
●

●

●

●
●

●

●

●

●

● ●

●
●

●
●

●

●

●●

● ●

●

●

●

●

●
●

●● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

● ●

● ●
●

●

● ●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

● ●
●
●

●

●●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●
●

●
●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

● ●
●

●

● ●

●
●●

●● ●

●

● ●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

● ●●

●
●

● ●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

●●

●

●
●

●
●

●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●
●●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

● ●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
● ●

●

● ●

●●●

●

●

●●

● ●

●

●
●

●●
●

●

●

●

●

●

●●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●● ● ● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ● ●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●
●● ●●

●

●

●

● ●

●

●
●

●●

●

●
●

●

●

●● ● ●

●
●

●

●

●

●
●

●

●

●●
●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
●●

●●
●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●
●●●

●

●

● ●● ● ●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

● ●

●

● ●

●●
●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
● ●

●

●
●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
● ●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●●
●

●

●

● ●
●

●

●

●

●

●

●
●● ●

●

● ●

●

●

●
● ●

●

●

●

●

●

●
●

●

● ●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

● ●
●

●

●

●● ●
● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●● ● ●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●●

●
● ● ●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●● ●
●

●

●

● ●
●

●

●

●●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●●
●●

● ●

●

●

●●

●

●

●

●
●

●

●
● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●●

●
● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●
●

● ●

●

●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

● ●
●

●

●
●●

●
●

●

● ●

●

●

● ●●

●

●

●

●

● ●
●

●
●

●

● ●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●●

●

●

● ●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●
●

● ●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

● ●

●

●

● ● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●●
●

●

●

●●●

●

●

●●

●
● ●

●
●

●

●●

●

●
●

●
●

●
●●

●

● ●
●

●

●

●●

●

● ●

●

●

●

●●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●
● ●

●

●

●
●

●

● ●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

● ●

●

●

●●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●●

●●●

●
●

●

●
●

●

●
●

●
●

●●
●

●●
●

●

● ●

●

●

●●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●
●

●
●

●

●●

● ●

●●

●

●

●

●●

●

●
●

●
●

●

●●

●
●

●
●

●
●

●

●
●●

●

●

● ●●●

●
●

●

●

●

●

●●

●

●

● ●
●

●
●

●

●

●

●
●●

●

●

●

●

●

20 25 30 35 40 45 50 55

0.
5

1.
0

1.
5

 

●

truncated sample
whole sample

n0

γ

 −
9 

 −7 

 −6 

 −5 

 −4 

 −4 

 −3 

 −3 

 −2 

 −2 

 −2 

 −1 

 −1 

 −1 

 0 

 0 

 0 

 0 

 1
 

 1 

 1 

 2 

 2
 

0 20 40 60 80 100

−
2

−
1

0
1

2
3

+

+
+

+

The challenging part in this procedure is the estimation of the Poisson
means µi = E[yi|xi] in the absence of the knowledge whether the Poisson
assumption is correct. This problem has attracted attention earlier; Di-
etz and Böhning (2001) observed that ML estimation of the zero–modified
Poisson model can be obtained by ML estimation of the zero–truncated
Poisson (ZTP) model. For additional insight, consider Figure 1 (left), which
shows the estimates of the Poisson means obtained when n = 100 obser-
vations are sampled from a Pois(1) distribution. The black circles indicate
whole sample mean (Poisson) estimates µ̂P , and the grey crosses the means
µ̂T obtained from the positive observations. The horizontal axis gives the
number of zeros, n0, with the expected number of zeros under the Poisson
model, 100e−1 ≈ 37, highlighted by a dotted line. It is clear that the Pois-
son estimator has smaller variance but is possibly biased if the observed
number of zeros is far from their expected number. On the other hand, the
ZTP–derived mean estimator does not demonstrate a noticeable bias, at
the expense of a large variance.

2 A hybrid mean estimator

The illustrated bias–variance trade–off motivates the definition of the hy-
brid estimator

T = γµ̂P + (1− γ)µ̂T (1)

which is a weighted sum of the usual Poisson mean estimator µ̂P and an
estimator of the zero–truncated mean, µ̂T . The latter is based on the mean
of the zero–truncated data only, to which we refer from now on as ζ. Note
that the mean µ of a Poisson distribution and the mean ζ of the ZTP



Wilson and Einbeck 329

distribution are related by ζ = µeµ

eµ−1 ≡ h(µ). The MLE of µ under the ZTP

assumption is then given by the inverse mapping µ̂T = h−1(ζ̂). Of course,
all terms used in this section can be equipped with the index i to account
for the case of covariates as laid out in Section 1.

3 Selection of the hybrid parameter

For the choice of γ, we have initially carried out a detailed theoretical study.
To give some idea of this, we provide here the result that, in the covariate–
free case, and only assuming a ZTP distribution for the non–zero part, the
MSE(T |n0) is minimized at

γ∗n(n0, µ) =
n

n−n0
− h′(µ)

1
n
µ(n−n0eµ)2h′(µ)2

eµ(eµ−1−µ) + h′(µ)2
(
1− n0

n

)
+ 2h′(µ) + n

n−n0

(2)

Figure 1 (right) shows the curve γ∗ for fixed n = 100 and µ = 1. It is,
firstly, interesting to note that in a small range close to the expected value
(≈ 37) under the Poisson model, the optimal γ is in fact > 1. However,
for the majority of values of n0 the curve is between 0 and 1, and falls
very quickly below 1 when deviating from the expected value. While this
kind of result could motivate an iterative procedure, in which T and γ are
updated in turns via (1) and (2), we found this approach practically less
useful since the increased variance incurred by the iterative estimation of γ
contravenes the purpose of the hybrid estimator. We therefore considered
two considerably simpler schemes:

(i) a single fixed rule–of–thumb value; where we have chosen γ = 2/3.

(ii) a parametric expression γ =f(µ̂P ) =

{
0.7
(
0.85µ̂P

)
µ̂P <

log(5/7)
log(17/20)

1
2 otherwise

The rationale of (ii) is to improve the attainment rate of the test by dereas-
ing the weighting of the Poisson mean in the mixture for larger values of this

estimator. The threshold log(5/7)
log(17/20) ≈ 2.07 is chosen so that f is continuous.

Figure 2 (left) compares settings (i) and (ii) graphically. Consider in this
context the four crosses, from left to right in Figure 1 (right), which corre-
spond to the optimal γ under zero–inflation parameter 0, 0.1, 0.2 and 0.5,
respectively. We see that in the middle two cases (moderate zero–inflation)
one has γ∗ ∈ [0.4, 0.8], so that we consider our suggested choices to be in
harmony with our theoretical considerations.

4 Simulation

For the two–sided zero–modification test, Figure 2 (right) demonstrates,
for a covariate–free simulation from Poisson data of varying µ, that (i) and
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FIGURE 2. Left: choices (i) and (ii) for the selection of γ; right: attainment rate
under mixture estimator (Two sided test of zero-modification)
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(ii) both work well in terms of the nominal level attainment, with slight
advantages for (ii). Focusing now on (ii), Figure 3 gives an impression of
power as compared to the score test, as a function of sample size n. One
sees that the powers are strong and very competitive to the score test,
especially for smaller sample sizes. Note that here, and throughout this
paper, the p-values reported for the proposed test are the mid p-values
1
2P0[T ≥ t+ 1] + 1

2P0[T ≥ t] of Franck (1986).

FIGURE 3. Power under mixture estimator (Covariate–free Model, Two sided
test of zero–modification)
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Figure 4 shows that the power and nominal attainment level of the proposed
test also compares strongly to that of the score test in the presence of
covariates. Here x1 and x2 are uniformly distributed on the interval (0, 0.5),
and w1 is uniformly distributed on the interval (1, 2). The adaptive mixing
parameter is used, but the results remain similar for the constant estimator.
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FIGURE 4. Power under mixture estimator (Covariate Model, Two sided test of
zero–modification)
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5 Examples

5.1 Biodosimetry Data

We consider four biodosimetry datasets consisting of chromosome aberra-
tion counts occuring after whole body exposure to ionising radiation. These
datasets have previously been studied by Oliveira et al. (2016), detailed de-
scriptions of the datasets are available in this paper.
Table 1 summarises the results obtained when the proposed test and a score
test are used to test for zero-inflation relative to a quadratic Poisson model
with log-link. We see that both tests fail to reject the Poisson model for
the A3 data, but do not do so for the other datasets considered. For all the
instances where the Poisson model was rejected we see that the observed
number of zeros is greater than the upper limit of the 95% confidence
interval, indicating that the data is zero-inflated.

TABLE 1. Analyses of Biodosimetry Data
Proposed Test Score Test

Data Obs. Zeros 95%CI p-value Statistic p-value

A1 14, 430 (14204, 14329) < 10−9 16.85 4.03× 10−5

A3 2, 747 (2719, 2823) 0.368 1.01 0.317
B1 7, 280 (6707, 6829) < 10−9 87.16 < 10−9

C1 6, 786 (5031, 5164) < 10−9 1, 996.10 < 10−9

5.2 Unwanted Pursuit Behaviour Data

Loeys et al. (2012) analysed data which concerns “separation trajectories”.
Participants in a survey were assigned a score that theoretically ranges from
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0 to 112, the maximum observed score was 34. This score is a measure of
the participants experience of behaviour by their partner that contributed
towards the breakup of a relationship. Two covariates were included in
the model: a binary variable “education level” (0 = lower than bachelors
degree, 1 = at least bachelors degree), and a continuous measurement for
the level of anxious attachment in the former partner relationship. There
are n = 387 data of which 246 are zeros. The proposed test shows that a
95% confidence interval for the number of observed zeros under the Poisson
model is (45, 72), and hence we may reject the Poisson model. Analysis of
the data by a score test returns a statistic of 591.8, also indicating rejection
of the Poisson model. Both tests return p-values < 10−9.

6 Conclusion

The proposed test for zero-modification has power and attainment rates
that compare very strongly to the score test. In addition to this it distin-
guishes between zero-inflation and zero-deflation and is a highly intuitive
test that, unlike existing tests, is readily explainable to non-statistical spe-
cialists. The technique may be extended to compare any two count regres-
sion models, and may be used as the basis of a diagnostic plot for assessing
model fit. See Einbeck and Wilson (2016).
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Dietz, E. and Böhning, D. (2000). On estimation of the Poisson parameter
in zero–modified Poisson models. Computational Statistics & Data
Analysis 34, pages 441 – 459.

Einbeck, J. and Wilson, P. (2016). A Diagnostic Plot for Assessing Model
Fit. Proc’s of the 31st IWSM, Rennes, France, to appear.

Franck, W. (1986). P-values for Discrete Test Statistics. Biometrical Jour-
nal 4, pages 403 – 406.

Loeys,T., Moerkerke, B., De Smet, O., and Buysse, A. (2012) Expert Tu-
torial: The analysis of zero-inflated count data: Beyond zero-inflated
Poisson regression. British Journal of Mathematical and Statistical
Psychology 65, pages 163 – 180.

Oliveira, M., Einbeck, J., Higueras, M., Ainsbury, E., Puig, P. and Rothkamm, K
(2016). Zero-inflated regression models for radiation-induced chromo-
some aberration data: A comparative study. Biometrical Journal 58,
259 - 279.

Wilson, P. and Einbeck, J. (2015). A simple and intuitive test for number–
inflation or number–deflation. In: Wagner, H. and Friedl, H. (Eds).
Proc’s of the 30th IWSM, Linz, Austria, Vol 2, pages 299 – 302.



Sparse relative risk survival modelling

Ernst C. Wit1, Hassan Pazira1, Fentaw Abegaz 2, Javier
Gonzalez 3, Luigi Augugliaro4

1 University of Groningen, Netherlands
2 University of Liege, Belgium
3 University of Sheffield, United Kingdom
4 University of Palermo, Italy

E-mail for correspondence: e.c.wit@rug.nl

Abstract: Cancer survival is thought to be closely linked to the genomic con-
stitution of the tumour. Discovering such signatures will be useful in the diag-
nosis of the patient and may be used for treatment decisions and perhaps even
the development of new treatments. However, genomic data are typically noisy
and high-dimensional, often outstripping the number of patients included in the
study. Regularized survival models have been proposed to deal with such scenar-
ios. These methods typically induce sparsity by means of a coincidental match of
the geometry of the convex likelihood and (near) non-convex regularizer. The dis-
advantages of such methods are that (i) they are typically non-invariant to scale
changes of the covariates, (ii) they struggle with highly correlated covariates and
(iii) the have a practical problem of determining the amount of regularization. In
this manuscript we propose a principled method for sparse inference in relative
risk regression models based only on the likelihood. The method is computation-
ally fast and is implemented in the R-package dglars.
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1 Introduction

Sparse inference in the past two decades has been dominated by methods
that penalize typically convex likelihoods by functions of the parameters
that happen to induce solutions with many zeros. The lasso (Tibshirani,
1996) and other penalization approaches are all examples of methods that
depending on some tuning parameter conveniently shrink estimates to ex-
act zeroes. Also in survival analysis these methods have been introduced.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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Tibshirani (1997) applied the lasso penalty to Cox proportional hazards
model. Although the lasso penalty induces sparsity, it is well known to
suffer from possible inconsistent selection of variables.
In this paper, we will approach sparsity directly from a likelihood point
of view. The angle between the covariates and the tangent residual vector
within the likelihood manifold provides a direct and scale-invariant way to
assess the importance of the individual covariates. The idea is similar to
the least angle regression approach proposed by Efron et al. (2004) and
Augugliaro et al. (2013). Moreover, the method extends directly beyond
the Cox proportional hazard model. In fact, we derive all the results for
general relative risk survival models.

2 Sparse relative risk regression

The dgLARS method (Augugliaro et al., 2013) introduced sparse inference
for generalized linear models.

2.1 Relative risk regression

To extend the method to survival models, Thomas (1977) observed that
the partial surival likelihood

Lp(β) =
∏
i∈D

ψ(xi(ti);β)∑
j∈R(ti)

ψ(xj(ti);β)
. (1)

can arise from a multinomial sample scheme. Consider an index i ∈ D
and let Yi = (Yih)h∈R(ti) be a multinomial random variable with sam-
ple size equal to 1 and cell probabilities πi = (πih)h∈R(ti) ∈ Πi, i.e.
p(y;πi) =

∏
h∈R(ti)

πyihih . Assuming independence and the following model

for the conditional expected value of the random variable Yih, i.e. Eβ(Yih) =

πih(β) = ψ(xh(ti);β)∑
j∈R(ti)

ψ(xj(ti);β) , then our model space is the set

M =

∏
i∈D

∏
h∈R(ti)

(
ψ(xh(ti);β)∑

j∈R(ti)
ψ(xj(ti);β)

)yih
: β ∈ B

 . (2)

The partial likelihood (1) is formally equivalent to the likelihood function
associated with the model space M if we assume that for each i ∈ D, the
observed yih is equal to one if h is equal to i and zero otherwise. Let `(β) =∑
i∈D

∑
h∈R(ti)

Yih log πih(β) be the log-likelihood function associated to

the model space M and let ∂m`(β) = ∂`(β)/∂βm.
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2.2 Differential geometric least angle regression

The likelihood of a relative risk survival models is clearly non-linear in the
parameters. The geometry of the likelihood manifold can be defined locally,
by considering the structure of tangent spaces. This differential geometric
representation can be used to extend the least angle regression approach.
The dgLARS estimator is based on a differential geometric characterization
of the Rao score test statistic, which is obtained considering the inner
product between the bases of the tangent space TβM and the tangent
residual vector rβ =

∑
i∈D

∑
h∈R(ti)

rih(β)∂ih`(β), where rih(β) = yih −
πih(β). The dgLARS method is a sequential method developed to estimate
a sparse solution curve embedded in the in the parameter space B. To
explore the sparse structure of a relative risk regression model, we can
use the following differential geometric characterization characterization
of the mth element of the score vector, i.e., ∂m`(β) = 〈∂m`(β); rβ〉β =

cos(ρm(β))·I1/2
mm(β)·‖rβ‖β , where Imm(β) is the Fisher information for βm,

and ρm(β) is a generalization of the Euclidean notion of angle between the
mth column of the design matrix and the residual vector r(β). One can see
that the signed Rao’s score test statistic can be geometrically characterized
as follows:

rum(β) = I−1/2
mm (β)∂m`(β) = cos(ρm(β)) · ‖rβ‖β ,

then we shall say that two given predictors, say m and n, satisfy the gen-
eralized equiangularity condition at the point β when |rum(β)| = |run(β)|.
Inside the dgLARS theory, the generalized equiangularity condition is used
to identify the predictors that are included in the active set. Formally, for a
given value of the Rao score test statistic γ ∈ R+ the corresponding active
set is denoted by Â(γ) and the dgLARS estimator, denoted by β̂(γ), is such
that the following conditions are satisfied:

∀m ∈ Â(γ) ⇒ rum(β̂(γ)) = smγ, (3)

∀n /∈ Â(γ) ⇒ |run(β̂(γ))| < γ. (4)

where sm = sign(β̂m(γ)).

2.3 Estimation of the DgLARS solution path

Using the differential geometrical structure of a relative risk regression
model and the previous conditions, it is possible to use the dgLARS method
to explore the sparse structure of a relative risk regression model. Formally,
the dgLARS method computes a finite sequence of transition points, say
0 ≤ γ(K) ≤ . . . ≤ γ(2) ≤ γ(1), such that for each γ(k) one of the following
two conditions can occur:
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(i) ∃n /∈ Âγ(k−1) such that∣∣∣run(β̂(γ(k)))
∣∣∣ = γ, (5)

and therefore Âγ(k) = Âγ(k−1) ∪ {n};

(ii) ∃m ∈ Â(γ(k−1)) such that

sign(rum(β̂(γ(k)))) 6= sign(β̂m(γ(k))), (6)

and therefore Âγ(k) = Âγ(k−1) \ {m},

which means that a new predictor is included in the active set when the
generalized equiangularity condition is satisfied, namely condition (5), or an
active predictor is removed from the active set if the sign of the correspond-
ing signed Rao’s score test statistic is not in agreement with the sign of the
estimated coefficient, i.e. condition (6). In order to simplify our notation, in
the following of this section we shall assume that Âγ = {1, 2, . . . , k}. Ob-
serving that for each γ ∈ (γ(k+1); γ(k)] the signs of the estimated coefficients
do not change, condition (3) tells us that, for a fixed value of the tuning
parameter γ, the dgLARS estimator can be defined as the Z-estimator im-
plicitly defined by the following system of estimating equations:

ru1 (β̂(γ))− s1γ = 0

ru2 (β̂(γ))− s2γ = 0
...

...

ruk (β̂(γ))− skγ = 0.

(7)

3 Sparse Cox proportional hazards model

Let Z, C and x(t) denote the survival time, the censoring time and their
associated p-dimension vector of covariates which can depend on time t,
respectively. Further denote by T = min{Z,C} the observed time and
Y = I{Z ≤ C} the censoring indicator. For simplicity, we assume that
Z and C are conditionally independent and the censoring mechanism is
non-informative.
The proportional hazards model is very popular in survival data analysis
partially due to its simplicity and its convenience in dealing with censoring.
The proportional hazards model assumes that the hazard function is

λ(t; x) = λ0(t) exp(βTx(t)), (8)

where λ0(t) is the baseline hazard function is unspecified and needs to be
estimated nonparametrically and β is a p-dimensional vector of unknown
fixed parameters of interest. The proportional hazards model is an example
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of relative risk regression models where the hazard function in ((8)) is given
by ψ(x(t);β) = exp(βTx(t)) .
Inference about β can be made using the partial likelihood originally in-
troduced in Cox (1972), which is given via

Lp(β) =
∏
i∈D

exp(βTxi(ti))∑
j∈R(ti)

exp(βTxj(ti))
. (9)

where D is the set of indices corresponding to failed subjects and R(ti)
denotes the risk set, that is the set of indices corresponding to the subjects
who have not failed and still under observation just prior to time t. The
Cox partial likelihood is a special case of the likelihood function defined in
general for relative risk regression models. Because the Cox proportional
hazards model can be expressed as a relative risk regression model, variable
selection can be performed using dgLARS as formulated and discussed in
the previous sections.

4 Finding genetic signatures in cancer survival

We apply dgLARS relative risk regression to the identification of genes
involved in the regulation of colon (Loboda et al., 2011) and skin (Jonsson
et al., 2010) cancers. The set-up of the both studies was similar. After
cancer was detected the patients started to follow some specific treatment.
In all cases, the expression of some genes was measured in the affected
tissue together with the survival times of the patients, which is assumed to
be censored if the patients were alive when they left the study.

TABLE 1. Description of the two high-dimensional cancer experiments studied
in this section. Datasets are available at http://www.ncbi.nlm.nih.gov/.

Cancer n uncen. p p sel. GW test Reference

Colon 125 70 23698 62 0.0224 Loboda et al. 2011
Skin 54 47 30807 21 0.025 Jonsson et al., 2010

Table 1 shows that for both scenarios p is much larger than n. In genomic
studies it is a common hypothesis to assume that just a few number of
genes affect the dependent variable of interest. To identify such genes in
our survival data analysis context, we estimate a relative hazard risk model
using the dgLARS algorithm. To this end, we randomly select a training
sample that contains the 60% of the patients and we save the remaining
data to test the models. We calculate the paths coefficients in the four
scenarios and we select the optimal number of components by means of
the GIC criterion. The number of selected genes in each case is detailed in
Table 1 ranging from 21 genes in the skin cancer data set to 62 in the colon
dataset.
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FIGURE 1. The Kaplan-Meier survival curves estimates for training data are
shown together with the curves associated to the two groups obtained in the test
sample by means of the predicted excess risk.
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