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Ivana Malá: Modelling of the unemployment duration in the Czech
Republic with the use of a finite mixture model . . . . . . . . . . . . . . . . . 75
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Penalized Gaussian Copula Graphical Models
for Detecting Epistatic Selection

Pariya Behrouzi1, Ernst C. Wit1

1 Johann Bernoulli Institute, University of Groningen, Netherlands

E-mail for correspondence: P.Behrouzi@rug.nl

Abstract: The detection of high-dimensional epistatic selection is an impor-
tant goal in population genetics. The reconstruction of the signatures of epistatic
selections during inbreeding is challenging as multiple testing approaches are
under-power. Here we develop an efficient method for reconstructing an under-
lying network of genomic signatures of high-dimensional epistatic selection from
multi-locus genotype data. The network reveals “aberrant” marker-marker asso-
ciations that are due to epistatic selection. The estimation procedure relies on
penalized Gaussian copula graphical models.

Keywords: Epistasis; Gaussian copula; High-dimensional inference.

1 Introduction

Recombinant Inbred Lines (RILs) study design is a popular tool for study-
ing the genetic and environmental basis of complex traits. RILs typically
are derived by crossing two inbred parents followed by repeated genera-
tions to produce an offspring whose genome is a mosaic of its parental
lines. Assuming genotype of parent 1 is labeled AA and that of parent 2 is
labeled BB, the routine way of coding the genotype data is to use {0, 1, 2}
to represent {AA,AB,BB}, respectively. The construction of RILs is not
always straightforward: low fertility, or even complete lethality, of lines
during inbreeding is common. These genomic signatures are indicative of
epistatic selection having acted on entire networks of interacting loci during
inbreeding.
The reconstruction of multi-loci interaction networks from RIL genotyping
data require methods for detecting genomic signatures of high-dimensional
epistatic selection. One commonly used approach is hypothesis testing. The

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).



4 Detect epistatic via a latent Gaussian Copula Graphical Mode

drawback with such an approach is that hypothesis testing at the genome-
scale is typically underpowered. Furthermore, theory shows that pair-wise
tests are not, statistically speaking, consistent when two interacting loci are
conditionally dependent on other loci in the network, and may therefore
lead to an incorrect signatures.
In order to overcome some of these issues, we argue that the detection of
epistatic selection in RIL genomes can be achieved by inferring a high-
dimensional graph based of conditional dependency relationships among
loci. Technically, this requires estimating a sparse precision matrix from a
large number of discrete ordinal marker genotypes, where the number of
markers p can far exceed the number of individuals n.

2 Methods

Multivariate Gaussian copula graphical model.

Let Y
(i)
j j = 1, . . . , p; i = 1, . . . , n denotes the genotype of ith individual

for jth marker. The observations Y
(i)
j arise from {1, . . . ,Kj},Kj ≥ 2 dis-

crete ordinal values. In the genetic set-up, Kj is the number of possible
genotypes at locus j. A way to define the conditional independence rela-
tionships among the genetic markers is to assume an underlying continua

for the Y
(1)
j , . . . , Y

(n)
j , which can not observed directly and which manifest

itself through an ordinal scale of fixed length. In our modeling framework,

Y
(i)
j and Z

(i)
j define the observed genotype and latent state, respectively.

Each latent variable corresponds to the observed variables, expressed by

a set of cut-points (−∞, C(j)
1 ], (C

(j)
1 , C

(j)
2 ] . . . , (C

(j)
k ,∞), which is obtained

by partitioning the range of Zj into Kj disjoint intervals. Generally, y
(i)
j

can be written as follow y
(i)
j =

∑Kj

k=1 k× l{c(j)
k−1<z

(i)
j ≤c

(j)
k }

.

Suppose the continuous latent variable Z has a p-variate normal distribu-
tion with Np(0,Θ

−1). The Gaussian copula modeling can be expressed as
Yj = F−1

j (Φ(Zj)) where Fj represents marginals.
Inference of Gaussian copula graphical model.
Epistasis networks are known to be sparsely connected, so we impose spar-
sity on the elements of the precision matrix using an `1-norm penalty. We
introduce the penalized EM algorithm for the estimation procedure. In
the E-step the conditional expectation of the joint penalized log-likelihood
given the data and Θ̂(m) can be determined as follow

Qλ(Θ | Θ̂(m)) =
n

2
[log |Θ| − tr(R̄Θ)− p log(2π)]− λ||Θ||1 (1)

Here R̄ = 1
n

∑n
i=1E(z(i)z(i)t | z(i) ∈ D(y(i)), Θ̂(m)). The M-step involves

the optimizing this conditional expectation. To obtain the R̄, we use two
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simplifications

E(z
(i)
k z

(i)t
l | y(i), Θ̂) ≈

{
E(z

(i)
k | y(i), Θ̂)E(z

(i)
l | y(i), Θ̂) if 1 ≤ k 6= l ≤ p ;

E(z
(i)2

k | y(i), Θ̂) if k = l.

Thus, the variance elements in the conditional expectation matrix can be

calculated through the second moment of the conditional z
(i)
j | y(i), and the

rest of the elements in this matrix can be approximated through the first
moment of the truncated multivariate Gaussian distribution. To obtain the
optimal model in terms of graph estimation we pick the penalty term that
minimizes EBIC over λ > 0.

TABLE 1. Comparison the two methods over 50 independent run, where p = 150, n = 50.

The best model in each column is boldfaced.

Random Scale-free

k=2 k=5 k=10 k=2 k=5 k=10

Approx
F1 0.10 0.23 0.25 0.05 0.12 0.14
SEN 0.30 0.22 0.30 0.20 0.18 0.15
SPE 0.90 0.98 0.99 0.90 0.97 0.99

NPNtau
F1 0.0 0.07 0.07 0.002 0.03 0.04
SEN 0.00 0.77 0.80 0.04 0.67 0.56
SPE 1.00 0.58 0.58 0.97 0.55 0.64

3 Data analysis

Simulations. We set up simulations to generate sparse matrices Θ un-
der commonly encountered genetic network structures: random and scale-
free networks. We compare the performance of our proposed method with
the nonparanormal skeptic Kendall’s tau Liu et al. (2012) approach. We
compare the two models for n = 50, p = 150, and different scenarios of
k ∈ {2, 5, 10}. The results of the comparisons are provided in Table 1.
We note that high values of the F1-score, sensitivity (SEN) and specificity
(SPE) indicate good performance. These results suggest that, though re-
covering sparse network structure from discrete data is a challenging task,
the proposed approach performs well.
Epistatic selection in Arabidopsis thaliana. We apply our proposed
method to detect epistatic selection in a RIL cross derived from A.thaliana
genotype, where 367 individuals were genotyped for 90 genetic markers (M.
Simon et al. (2008)). The A.thaliana genome has 5 chromosomes. Each
chromosome contains 24, 14, 17, 16, 19 markers, respectively. Figure 1
shows that the bottom of chromosome 1 and the top of chromosome 5
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FIGURE 1. Inferred network for the genotype data in A.thaliana.

do not segregate independently from each other. Beside this, interactions
between the top of chromosomes 1 and 3 involve pairs of loci that also do
not segregate independently. This genotype has been studied extensively
in Bikard et al. (2009). They reported that the first interaction we found
causes arrested embryo development, resulting in seed abortion, whereas
the latter interaction causes root growth impairment. In addition of these
two regions, we have discovered few other trans-chromosomal interactions
in the A.thaliana genome. These additional interactions may reveal other
disorders in this crop that affect its viability.

4 Conclusion

The detection of high-dimensional epistatic selection is an important goal in
population genetics. Our proposed method combines the Gaussian copula
with Gaussian graphical models to explore the conditional dependencies
among large numbers of genetic loci in the genome. Our simulations show
that the proposed method outperforms the alternative method in terms of
graph recovery. In the application of our method in the Arabidopsis, we
discovered two regions that interact epistatically, in which cause arrested
embryo development and root growth impairments.
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Spatio-temporal modelling of crime using low
discrepancy sequences

Paul Brown1, Chaitanya Joshi1, Stephen Joe1, Nigel McCarter2

1 Department of Mathematics and Statistics, University of Waikato, Hamilton,
New Zealand

2 NZ Police Intelligence, Waikato, New Zealand

E-mail for correspondence: ptb2@students.waikato.ac.nz

Abstract: We perform spatio-temporal modelling of burglary data in order to
predict areas of high criminal risk for local authorities. We wish to account for
several spatio-temporal factors as latent processes to make the model as real-
istic as possible, thus creating a model with a large latent field with several
hyperparameters. Analysis of the model is done using Integrated Nested Laplace
Approximations (INLA) (Rue et al. 2009), a fast Bayesian inference methodol-
ogy that provides more computationally efficient estimations than Markov Chain
Monte Carlo (MCMC) methods.

Keywords: Bayesian inference; Crime modelling; Integrated nested Laplace ap-
proximations; Low discrepancy sequences; Spatio-temporal modelling

1 Introduction

Efficient use of police resources is vital for taking preventative measures against
crime, as opposed to reactive measures. As such, intelligence-led policing, where
data, analysis, and criminal theory are used to guide police allocation and decision-
making, are becoming ever more popular and necessary (Ratcliffe, 2012). Given
that crime and its associated factors occur within a geographical context that in-
clude both space and time (Fitterer et al., 2014) spatio-temporal modelling can
lead to more accurate prediction of crime than modelling which does not take
these factors into consideration. Spatio-temporal modelling under the Bayesian
paradigm also allows more information to be included through prior knowledge
from local authorities and officials.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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2 Data and Methods

2.1 Burglary Data

The main dataset consists of residential, petty (under NZ$5000) burglaries from
2010 to 2015 in the Hamilton City region, New Zealand. All locations are geo-
coded using the New Zealand Transverse Mercator (NZTM) northings and east-
ings. The region is bounded by an 11 kilometre (km) × 13 km rectangle, and is
partitioned up in 1 km × 1 km cells, giving 143 cells in total (see Figure 1).

FIGURE 1. Hamilton burglaries from 2010 to 2015 and map of Hamilton, NZ.

There are several underlying factors involved with the spatial distribution of
crime. Substantial research indicates that certain segments of the population and
particular types of environments can generate high offender rates (Brown, 1982).
The New Zealand Index of Deprivation (NZDEP) is a measure of socioeconomic
status of a small geographical area, and includes a range of variables including
income, employment and living spaces (see Atkinson et al. (2014) for full details).
The social and physical environment is represented by off-licence liquor stores
and graffiti respectively. Off-licence liquor stores, which may encourage a higher
consumption of alcohol is also used as a measure of the perception of lawlessness
and also of low anti-social behaviour. Incidence of graffiti has been used as a
measure of lawlessness and environmental deterioration within an area.

2.2 INLA

INLA is a fast Bayesian inference methodology for latent Gaussian models that
take the form

ηi = β0 +

nβ∑
j=1

βjzj,i +

nf∑
k=1

f (k)(uk,i) + εi,

where the {βk}’s are the linear effect on covariates z, {f (·)}’s represent the un-
known functions of the covariates u, and εi’s are the unstructured random errors.
The latent Gaussian model is obtained by assigning all parameters in the latent
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field φ = {β0, {βk}, {f (·)}, {ηi}} a Gaussian prior with mean 0 and precision ma-
trix Q(θ), with hyperparameters θ = {θ1, . . . , θm}. Inference on φ and θ are made
via the use of numerical integration, Laplace approximations and grid sampling
strategies. For a full account of the inference stage, see Rue et al. (2009).

2.3 Modelling

Let yi,t be the count of burglaries in cell i at time t. Assume that yi,t ∼
Poisson(λi,t), and log(yi,t) = ηi,t. We have a generalised additive model

ηi,t = β0 + β1NZDEPi + ri + gi + li + Yt + εi,t,

where β0 is the overall mean, β1 is a fixed linear parameter for the covari-
ate NZDEP. The term ri is the spatial effect of each cell, and is modelled as
a Gaussian Markov Random Field (GMRF) with unknown precision τr.This
specification, also known as conditionally autoregressive (CAR) prior, was in-
troduced by Besag et al. (1991) and is used extensively in disease mapping.
The terms gi and li are incidence of graffiti and number of liquor stores re-
spectively and are both modelled similarly to ri, with hyperparameters τg and
τl. The term Yt represents the yearly time effect and is modelled as a ran-
dom walk of order 1 (RW1) and has a hyperparameter τY . Hence our latent
parameters are φ = {{ηi,t}, β0, β1, {ri}, {gi}, {li}, {Yt}} with hyperparameters
θ = {τr, τg, τl, τY }.

3 Preliminary Results

0 200 400 600 800
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FIGURE 2. Actual count of burglaries per year vs. predicted count using INLA.

Figure 2 shows that the model predicts the actual counts well. Note that there are
143 cells, each with six years of data, giving the total of 858 cells for prediction.
There is some variability between the years for each cell. There may be other
temporal factors, such as seasonality, that may play an important role. Adding
and developing the model, as well as model performance is currently being worked
on.
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4 Ongoing Work

There are many factors that may be involved in burglaries that we have not con-
sidered yet. Many of these factors may have some spatial or temporal effects, thus
adding to the number of latent and hyper-parameters in the model. INLA could
lose its computational efficiency for models with a large number of hyperparam-
eters, therefore we need a methodology that can provide accurate and efficient
inference on such a model. Recently, a paper by Joshi et al. (2016) has proposed
using low discrepancy sequences instead of grids at the hyperparameter stage to
increase computational gains and accuracy. In ongoing work, we are building a
larger model with many hyperparameters using this approach.
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The memory of extrapolating P-splines
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Abstract: There are many situations in which forecasting with smoothing mod-
els is needed, for example, hourly temperatures at a weather station or yearly
number of deaths. Due to the kind of data and to the information available it
may be important to know how much of the past information we are using to
forecast. We introduce the concept of memory of a P-spline as a tool to provide
that information and show some of its properties. We illustrate the concept with
a data set of mortality of Spanish men.

Keywords: Forecasting; P-splines.

1 Forecasting with P-splines

Consider the case of a univariate Gaussian data, with ordered regressor x and
response variable y. The smooth model is of the form:

y = f(x) + ε, ε ∼ N (0, σ2I),

where f(·) is an unknown smooth function and ε are independent and identi-
cally distributed errors with variance σ2. Suppose, given n observations y of
the response variable, that we want to predict np new values yp at xp. Currie
et al. (2004) proposed a method for fitting and forecasting simultaneously with
smoothing models, it is based on the smoothing technique of penalized splines
proposed in Eilers and Marx (1996), i.e., the basic idea is to use a B-splines basis
as the regression basis and modify the likelihood function by adding a penalty
term over adjacent regression coefficients to control the smoothness of the fit.
Currie et al. (2004) construct a B-spline basis B from a set of knots which range
covers all values of x+ = (x′,x′p)

′. The B-spline basis has size n+ × c, with
n+ = n+ np and c the length of the vector of coefficients, θ.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).



12 The memory of extrapolating P-splines

To obtain simultaneously the fit and the forecast Currie et al. (2004) minimize
the following function of θ:

S = (y+ −Bθ)′M(y+ −Bθ) + λθ′D′Dθ,

where M is a diagonal weight matrix of size n+ × n+ with diagonal elements
equal to 0 if the data is missing or forecasted and 1 if the data is observed,
y+ = (y′,y′p)

′ is the vector of observations extended, it contains the observed
response, y, and arbitrary values, yp, λ is the smoothing parameter and D′D
is the penalty matrix. The penalized least square solution give the fit and the
forecast:

ŷ+ = H+y+,

with H+ the hat matrix, H+ = B(B′MB + λD′D)−1B′M .
Notice that because the last columns of H+ are all zeros (as the corresponding
diagonal elements of M are zero), H+ has the following form:

H+ =

[
H O1

Hp O2

]
, (1)

with H of size n× n, Hp of size np × n and O1 and O2 matrices of zeros of size
n× np and np × np, respectively. Therefore, ŷ = Hy and ŷp = Hpy.

2 Memory of a P-spline

Using the previous approach, we have that ŷp = Hpy are the predicted values,
i.e., the values of the rows of Hp give the influence of each observed value on the
predicted values. Therefore the key point to know how much past information
we are using to forecast is to summarize each row of Hp in a meaningful way. To
simplify the notation we define Gp = abs(Hp).
We have noticed that all rows of Gp follow a similar pattern, i.e., if we consider
each row as a function and we study their monotony we find that this is the same
for all the rows. For instance, if the maximum of the last row is taken at the last
column, this also happens in the rest of columns. Moreover, in every row of Gp

there are elements significantly larger than the others. The rows of a particular
matrix Gp are plotted in the right panel of Figure 1.
Based on these ideas we have developed the concept memory of a P-spline, to
know the overall weight of each observation on the prediction we have added the
columns of Gp and consider these values (after dividing by their sum) as a vector
of weights, w. Considering the domain, T , as the number of steps backward,
we define the memory of the P-spline as the 99th percentile, t0. Thus, t0 is the
number of steps backward we are taking information.
Notice that consider the memory as the 99th percentile is just one possibility to
summarize the vector of weights. Summary statistics that treat the weights as if
they are a discrete distribution (mean, quantiles, expectiles) are other choices.
We performed a simulation study (which we do not include due to the lack of
space) and we concluded:

• The memory does not depend on the prediction horizon.
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• Depending on the variability of the observed data the memory is smaller
or larger, i.e., the past has more or less influence on the predicted values.
The smoother the trend is, the greater the influence of the past on the
predicted values is. On the other hand, the rougher the trend is, the smaller
the influence of the past on the predicted value is.

• The memory, like the effective dimension, only depends on the smoothing
parameter and not on the size of the B-spline basis (provided that the basis
is sufficiently large). Models with equal effective dimensions have similar
memories.

3 Illustration

To illustrate the concept of memory of a P-spline we use a data on the log
mortality rates of Spanish men aged 29 between 1960 and 2009. The data set
contains 50 observations, i.e., the size of the hat matrix that give us the fit is
50× 50. If we forecast up to 2019, i.e., we compute 10 new observations, the hat
matrix Hp has size 10 × 50, the absolute value of the rows of Hp is plotted in
the right panel of the Figure 1.

TABLE 1. Normalized weights, wt, for the number of steps backward from the
last observed year.

t wt t wt t wt

1 0.5034 7 0.0171 13 0.0005
2 0.0747 8 0.0016 14 0.0002
3 0.1039 9 0.0067 15 0.0004
4 0.1314 10 0.0066 16 0.0003
5 0.0961 11 0.0043 17 0.0002
6 0.0506 12 0.0020 18 0.0001

To calculate the memory of the P-spline, we consider the vector of weights, w,
containing the standardized sum of the columns of Gp, its values are shown in
Table 1 (the values of wt for t = 19, ..., 50 are not shown in the table since
they are approximately 0). In this case the memory of the P-spline, the 99th

percentile, is t0 = 9, i.e., what has happened 9 years backward, before 2001, does
not influence on the future. Figure 1 shows the fit and the forecast of the log
mortality rates until 2019, the data that are between the red and the black lines
correspond to the data that influence the prediction, the data associated to the
years 2001-2009.

Acknowledgments: The work of the authors has been funded by the Ministry
of Economy and Competitiveness grant MTM2014-52184-P. The research of Dae-
Jin Lee was also supported by the Basque Government through the BERC 2014-
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FIGURE 1. Left panel: fit and forecast of the log mortality rates until 2019, the
data that there are between the red and the black lines correspond to the data
that influence the prediction. Right panel: rows of Gp, the red line corresponds
to the number of backward steps we are taking information, 9.
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Abstract: Goodness-of-fit (GOF) techniques have been widely studied to as-
sess the fit of distributions belonging to the location-scale (LS) family. However,
several truncated and skewed distributions used in biostatistics belong to the
non-location-scale family (NLS). In addition, because of time or money deci-
sions, some epidemiological studies end before all the patients enrolled in the
trial die or experience the event, producing censored data. Also, the comparison
of two treatments is a well-known problem in medicine. One could be interested
in comparing a new drug with the usual one or with a placebo. We analyze data
from a clinical trial where patients were assigned to drug or placebo in a surgery
intervention with uncensored observations. It is usually assumed that the un-
derlying distributions in both populations are the same with different location
parameters. We show that this is not always true, adjusting a LS distribution to
the placebo group and a gamma mixture distribution to the other. We consider
also real censored survival times finding that a NLS distribution best describe
them. Our research provides appropriate tools and new perspectives in model
selection using new GOF tests and graphical techniques. We illustrate the pro-
vided GOF results to the real-world data sets with probability plots that indicate
a very good specification of the postulated hypothetical distribution under H0.

Keywords: Censored Data;GOF tests;Location and Non-Location-Scale Family.

1 Introduction

Goodness-of-fit (GOF) tests have been developed for establishing the fitting of
a distribution to a data set. In particular, in reliability and survival analysis,
parametric life distributions are commonly used. GOF tests establish if the null
hypothesis H0 cannot be rejected based on empirical evidence. We have two pos-
sible options: (1) the distribution under H0 is completely specified and (2) some

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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or all the parameters of the distribution are unknown. The most common case is
the second one, where it is necessary to find a distribution in the family proposed
under H0 by means of proper parameter estimates in which case we suggest to use
the maximum likelihood (ML) method. We focus on GOF statistics that measure
the distance between the empirical cumulative distribution function (ECDF) and
CDF established under H0: Anderson-Darling (AD) and Kolmogorov-Smirnov
(KS). Also, we consider Michael (MI) statistic based on a modification of the
KS statistic using an arcsin transformation; see Michael (1983). The KS and MI
statistics can be related to graphical plots, which show how well the specified
theoretical distribution fits the data. Such graphs are the probability-probability
(PP) and stabilized probability (SP) plots. GOF tests need to be adapted to
censored samples. Several GOF tests for the LS family and different censored
schemes are known. Some new available GOF tests for the NLS family can be
considered as derivations from the proposal of Chen and Balakrishnan (1995),
which were extended to type II censored samples and unknown parameters; see
Castro-Kuriss et al. (2014). In this work, we propose to select models based on
hypothesis testing to compare two different treatments. The model selection can
be performed among those distributions where parameters with censored data
can be estimated, regardless the family where the model is contained.

2 GOF tests for censored and uncensored data.

Consider the hypotheses: H0: “the data are generated from a distribution with
CDF F (·)” versus H1: “the data are not generated from this distribution”. The
hypothesized distribution with CDF F (·) can depend on a parameter vector θ
containing location (µ), scale (β), shape (α) parameters or any other parameter
not necessarily of location and scale. If the hypotheses of interest H0 consid-
ers F (t) = F ([t − µ]/β) with unknown parameters, we elaborate Algorithm 1
(A1) to perform the test, estimating properly the unknown parameters. Chen &
Balakrishnan (1995) proposed an approximate GOF test that can be applied to
NLS distributions. This method first transforms the data to normality and then
applies A1 using the CDF of the normal model that allows us to compute the
critical values of the corresponding test statistics, independently of the parame-
ter estimators, if consistent estimators are available and the sample size exceeds
20. When the NLS family is considered under H0 with unknown parameters, we
propose Algorithm 2 (A2). GOF tests for NLS distributions with censored data
can be obtained adapting the GOF statistics. Graphical plots with acceptance
bands, like PP and SP plots, can also be derived to test NLS distributions under
H0 considering type II right censored samples.

3 Applications to real world data sets

3.1 Example 1: Comparison of two treatments.

Certain clinical trials are aimed at shortening the time-to-discharge. In a double-
blind placebo controlled drug study, Shuster et al.(2008) reported times (in hours)
of 23 patients on drug and of 25 patients on placebo. No censoring occurred
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on this trial. The hypothesis was that a 4-day ambulatory femoral nerve block
decreases the lengthofstay after a total knee arthroplasty compared with the
usual treatment. The placebo data show a distribution skewed to the right.
Hence, we consider 12 possible distributions including the generalized Birnbaum-
Saunders (GBS) with different kernels. The ML estimates and the corresponding
observed statistics for the selected Weibull (WE) model are omitted, but 0.4 <
p-value< 0.5 for the less powerful test. We notice that the drug data seem to
be generated by two different populations. Only two models fit well the data:
mixture normal and mixture gamma, being better the last one. We reject the
WE model with a p-value< 0.001. We omit here ML estimates of the parameters
from the drug group, components of the mixture gamma model and the observed
statistics, but 0.25 <p-value< 0.4 for the less powerful test. By means of the
selected distributions, we estimate that 43.4% of the patients that received the
conventional treatment and 4.4% of the patients that received the new drug stay
in the hospital more than 3 days (the usual estimated time): the drug is excellent
reducing the length of stay. Figure 1 shows the histogram and estimated PDF of
the indicated distributions for placebo and drug data in different scales. We omit
here the PP and SP plots for each group.
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FIGURE 1. Histogram and estimated PDF of the indicated distribution for data
in the placebo (left) and drug (right) groups.

3.2 Example 2: times to failure in an accelerated life test .

We analyze the times to failure in a temperature-accelerated life test for a device
(Meeker and Escobar; 1998). The sample is singly censored to the right with 33
failures and 4 censored observations at 5000 hours. We evaluate the adequacy
of 5 life distributions for which we can estimate their parameters in the case of
a censored sample and then use A2. The GBS model with normal kernel is the
distribution that provides the best fit to these data. The ML estimates of the
GBS parameters and the obtained observed statistics are omitted here, but for
the 3 of them we obtain 0.9 <p-value< 0.95 indicating an excellent adequacy of
the model. Figure 2 shows the PP and SP plots of the times to failure for device
according to the selected model with 95% acceptance bands. As expected all the
observations fall inside the bands with very good alignment.

4 Conclusions

We used the available tests for the NLS family and discussed the possibility of
model selection in both LS and NLS families based on a hypothesis test approach.
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FIGURE 2. PP (left) and SP (right) plots with 95% acceptance bands for times
to failure of a device using the BS model.

We proposed to use this approach to compare two or more treatments with un-
censored or censored observations. GOF tests for mixture distributions under
censoring schemes is under study by the authors.
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Abstract: Microarray technology has enabled the study of expression of thou-
sands of genes simultaneously. One of the main objectives in microarray experi-
ments is the identification of a panel of genes that are associated with a disease
outcome or trait. Many statistical methods have been proposed for gene selection
in the recent past but few systematic comparisons among these methods exist.
A review and comparison of the statistical methods may provide biomedical re-
searchers a useful guide for choosing the right method for a given microarray
data in differential gene expression analysis.
This study reviewed a Bayesian method for the false discovery rate (FDR) control,
based on the direct posterior probability approach, and the significance analysis
of microarrays (SAM) method, and compared their performance when applied to
two publicly available datasets from melanoma studies. The two approaches were
compared in terms of the power to detect differential gene expression, the predic-
tive ability of the genelists for a continuous outcome (G2 checkpoint function),
and the prognostic properties of the genelists for distant metastasis-free survival.
Enrichment analysis was also performed to determine the biological usefulness of
the genelists. The list generated by the SAM method contained fewer genes but
performed better in terms of prediction and prognosis. The Bayesian approach
was more powerful in detecting differential gene expression and contained more
important genes in melanoma biology than the SAM method.
The SAM method is the most commonly used method in feature selection in
microarray studies but loses power when the number of arrays (samples) are
small. The Bayesian approach would be more suitable under these circumstances.
However, we would recommend the SAM method to melanoma researchers, due
to the predictive and prognostic properties of the genelist it generated.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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1 Introduction

Microarray technology has revolutionized genomic studies by enabling the study
of differential expression of thousands of genes simultaneously. In the recent past,
statistical methods have been developed to find differentially expressed genes.
Tusher et al.(2001) proposed the SAM method, which identified genes with sta-
tistically significant changes in expression by assimilating a set of gene-specific
t-tests. Smyth (2005) developed a method that fits a linear model to the expres-
sion data for each gene and uses Empirical Bayes and other shrinkage methods
to borrow information across genes. Bayesian statistical methods have also been
developed for differential gene expression with a view to, inter italia, finding sig-
nificant genes or gene signatures in large oncological microarray studies. Among
those who studied Bayesian approaches and their applications to microarray are
Scharpf et al. (2009) and Lee et al. (2003).
Despite all the proposed methods mentioned above, there is no unanimous agree-
ment on any particular gene selection method as the standard. However, some
methods, like SAM, are more commonly used than others. A review and compari-
son of the statistical methods may provide bioinformaticians and other biomedical
researchers a useful guide for choosing the right method for the right data in dif-
ferential gene expression analysis. Furthermore, even though work has been done
on the development of methods for the differential analysis of gene expression
data measured in two conditions, open research questions still exist regarding
the analysis of gene expression data in which the training signal is a continuous
variable.
This paper reports a review of a Bayesian method for controlling the FDR and
the SAM method and their comparison in identifying genes that are associated
with a continuous outcome from the systems biology of melanoma, using a larger
number of melanoma cell-lines than reported in Kaufmann et al.(2008). While
the comparison of the SAM and the empirical Bayesian approaches to differential
gene expression analysis has been done, no study to our knowledge has assessed
the biological and clinical significance of genes identified by the SAM and the
Bayesian method based on the direct posterior probability approaches. Our study
has attempted to fill this gap in the literature. The comparison is based on the
size and the statistical assessment of the predictive and the prognostic properties
of the genelists produced by the two methods.

Material and Methods

Data

In our study, the gene expression data (raw intensities) consisted of 54 cell-lines
(35 melanoma tumors and 19 normal human melanocytes), each with 41,093
probes. Only the melanoma tumors were analyzed. After filtration and normal-
ization, 23,360 genes were available for analysis. The data matrix consisted of
log2 ratios of (G = 23, 360) genes on (n = 35) samples. An independent data set,
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consisting of gene expression data from 6307 genes on 58 primary melanomas
with survival outcome, was also obtained for assessing prognosis. This data set
has been reported in Winnepenninckx et al. (2006) and will hereafter be referred
to as the Winnx dataset.
G2 checkpoint function was selected to quantify the biological process in melanoma
progression. The G2 checkpoint is a position of control in the cell cycle that delays
or arrests mitosis when DNA damage by radiation is detected. The G2 checkpoint
prevents cells with damaged DNA cell from entering mitosis, thereby providing
the opportunity for repair and stopping the proliferation of damaged cells. Pathol-
ogy experiments were conducted at Kaufmann’s lab (UNC - Pathology and Lab
Medicine) to assess the G2 checkpoint function. For this study, the G2 check-
point function in melanoma cell-lines was scored as a ratio of mitotic cells in 1.5
Gy ironizing radiation (IR)-treated cultures in comparison to their sham-treated
control (i.e. IR to sham ratio) (Omolo et al.(2013)). Melanoma cell-lines with G2

scores greater than 0.30 were considered as checkpoint defective; otherwise they
were effective.

Statistical Analysis

We applied SAM and Bayesian approach to find genes that are associated with
G2 checkpoint function. SAM employs the FDR control for the multiple testing
problem and estimates the FDR through the permutation of values of the response
variable and the gene-specific score while Bayesia approach permits control of
the FDR using the direct probability approach. The two gene list generated by
the two methods are hereafter be called SAMlist and Bayeslist respectively. In
order to get additional insight into the performance of the two approaches, the
two genelists were intersected to get the overlapping genes, hereafter known as
SAMBayeslist.
We assessed the predictive quality of each of the genelists by their mean squared
error (MSE) of prediction of the G2 checkpoint function. For this, linear models
containing significant genes were formulated. Since G >> n, the least absolute
shrinkage and selection operator (LASSO) algorithm Tibshirani (1996) was used
to select genes to include in the models. LASSO builds a sequence of models
containing upto n genes and index by F , the number of algorithm steps relative
to the model containing n genes (full model). For each F , a cross-validation
estimate is obtained using leave-one-out cross-validation (LOOCV) method. The
final model selected corresponds to the F -value with minimal estimated mean
squared error.
To determine the clinical significance of the genelists, we performed supervised
principal component analysis to identify genes that are significantly associated
with a clinical outcome in the Winnx dataset. The clinical outcome for this
dataset was 4-year distant metastasis-free survival (DMFS) and the objective
was to predict a patient’s risk (low/high) for developing distant metastasis within
4 years of primary diagnosis.Samples (patients) with a prognostic index above
the median are classified as high risk; otherwise, they are low risk. A log-rank
test is performed to test if the two survival curves for the low- and the high-risk
groups are significantly different, using the original DMFS values. The power of
the log-rank test is assessed through 1000 random permutations of the survival
and censoring times. A genelist would be prognostic for DMFS if the log-rank
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test is significant. We compared the performance of the genelists produced by the
two methods in survival risk prediction for the 58 samples in the Winnx dataset.

Results and Discussion

We refer to Table 1 below for a summary of our main results. The Bayesian

TABLE 1. Comparison of G2 checkpoint function prediction by the SAM,
Bayesian, and SAMBayes genelists. The number of genes associated with DMFS
(Cox genes) are also included.

SAM Bayes SAMBayes

Genelist 153 895 129
Genes in Model 29 34 15
R-squared 0.61 0.38 0.43
Accuracy 91% 69% 83%
Cox Genes 26 151 20

approach identified 895 significant 895 (Bayes genelist) compared to 153 by the
SAM approach (SAM genelist) at an FDR of 0.167411. The intersection of the two
genelists yielded 129 overlapping genes, hereby referred to as the SAMBayes list.
The three genelists were subjected to unsupervised hierarchical clustering analysis
in order to assess the separation of the 35 melanoma cell-lines (samples) into G2-
defective and G2-effective groups. Hierarchical clustering analysis was performed
using BRB-ArrayTools version 4.4.1, (Simon et al.(2007)). The defective and
effective cell-lines were also found to be statistically different (W = 276, P <
0.01). The näıve estimate of the mean square error was found to be 0.31 for the
SAM genelist, 0.23 for the Bayes genelist and 0.29 for the SAMBayes genelist.
The three genelists were also used to build linear predictive models for the G2

checkpoint function, via the LASSO with LOOCV. The R2 for the SAM genelist
was 0.61 with a predictive accuracy of 91%, while the R2 for the Bayesian genelist
was 0.38 with a predictive accuracy of 69%. The SAMBayes genelist yielded an
R2 of 0.43 with a predictive accuracy of 83%. Gene expression data for the three
genelists were extracted from the Winnx dataset for performing survival risk
prediction. The difference between the survival curves for the low- and high-
risk groups was significant for the SAM genelist (χ2 = 7.5, P = 0.0235, and
the SAMBayes genelist (χ2 = 4.4, P = 0.0363, but not significant for the Bayes
genelist (χ2 = 1.8, P = 0.175). Clearly, the SAM genelist was more accurate
in the prediction of the G2 checkpoint function and more prognostic for DMFS
than the Bayes genelist. Annotation and enrichment analysis was performed for
the three genelists using the Database for Annotation and Integrated Discovery
(DAVID) version 6.7 (Huang(2008)).

Conclusion

The SAM and a Bayesian method for differential gene expression were compared
in terms of their power to detect differential gene expression, the predictive abil-
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ity of the genelists for a continuous outcome, and the prognostic properties of the
genelists for DMFS. While the Bayesian approach was more powerful in terms of
the number of significant genes detected, the genelist generated by the SAM ap-
proach performed better in terms of prediction and prognosis. The Bayes genelist
was also enriched with lysosomal genes and contained other genes that are asso-
ciated with regulation of cell cycle progression and melanomagenesis.
Based on our analysis, the SAM approach would be preferred over the Bayesian
approach, even though it has limitations such as the over-estimation of the tails
of the null distribution of the FDR, for small sample sizes (Zhang(2007)). Future
work should focus on the development of models for differential gene expression
analysis that do not rely on the marginal distribution of the FDR. Our study was
limited to the two microarray datasets from melanoma research, but we believe
that the results would still hold when multiple datasets are considered.
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Abstract: This paper describes the modelling and fitting of Gaussian Markov
random field spatial components within a GAMLSS model. This allows modelling
of any or all the parameters of the distribution for the response variable using
explanatory variables and spatial effects. The response variable distribution is
allowed to be a non-exponential family distribution.
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1 Introduction

Discrete spatial variation, where the variables are defined on discrete domains,
such as regions, regular grids or lattices, can be modelled by Markov random
fields (MRF). In statistics, Besag and Kooperberg (1995) considered the Gaussian
intrinsic autoregressive model (IAR), a very important specific case of Gaussian
MRF (GMRF) models. Wood (2006) presents IAR models within a generalized
additive model (GAM) framework. Rigby et al. (2013) presented a simplified
analysis of Munich rent data with very few covariates, modelling the µ parameter
with a spatial effect using an IAR model term.
Section 2 discusses the GAMLSS framework. Section 3 discusses modelling and
fitting of GMRF spatial components within GAMLSS models. Section 4 presents
the infant mortality data set. Section 5 presents conclusions.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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2 The GAMLSS framework

The distribution of the response variable is selected from a wide range of distribu-
tions available in the gamlss package in R, Rigby and Stasinopoulos (2005). This
package includes distributions with up to four parameters, denoted by µ, σ, ν and
τ . All the parameters of the response variable distribution can be modelled us-
ing parametric and/or nonparametric smooth functions of explanatory variables
and/or random effect terms. A GAMLSS model assumes that, for i = 1, . . . , n,
independent observations Yi have probability (density) function fY (yi|θi) con-
ditional on θi = (θ1i, θ2i, θ3i, θ4i)

> = (µi, σi, νi, τi)
>, each of which can be a

function of the explanatory variables. In a random effects form it is given by:

g1(µ) = η1 = X1β1 +
∑J1
j=1 Zj1γj1,

g2(σ) = η2 = X2β2 +
∑J2
j=1 Zj2γj2,

g3(ν) = η3 = X3β3 +
∑J3
j=1 Zj3γj3,

g4(τ ) = η4 = X4β4 +
∑J4
j=1 Zj4γj4,

where here the random effects parameters γjk are assumed to have independent

(prior) normal distributions with γjk ∼ Nqjk (0, λ−1
jk G−1

jk ) and G−1
jk is the (gen-

eralized) inverse of a qjk×qjk symmetric matrix Gjk, where if Gjk is singular then
γjk has an improper prior density function proportional to exp(− 1

2
λjkγ

>
jkGjkγjk).

3 Gaussian Markov Random Fields

A Markov random field (MRF) is a set of random variables having a Markov
property based on conditional independence assumptions and described by an
undirected graph, G, where each vertex represents an areal unit and each edge
connects two areal units and represents a neighbouring relationship, Rue and
Held (2005).
Let G = (V, E) be an undirected graph (Whittaker, 2009) that consists of vertices
V = (1, 2, . . . , q), and a set of edges E , where a typical edge is (m, t), m, t ∈ V.
Undirected is in the sense that (m, t) and (t,m) refer to the same edge. A random
vector γ = (γ1, . . . , γq)

> is called a GMRF with respect to the graph G, with mean
µ and precision matrix λG, if and only if its density has the form

π(γ) ∝ exp

[
−1

2
λ(γ − µ)>G(γ − µ)

]
and

Gmt 6= 0⇐⇒ (m, t) ∈ E form 6= t,

where Gmt is the element of matrix G for row m and column t. It is denoted by
γ ∼ N(µ, λ−1G−1) where G−1 is the (generalized) inverse of G.
When G is non-singular, another way to represent a GMRF, by its conditional
mean and precision matrix, was given in Besag (1974), and known as the condi-
tional autoregressive model (CAR). When G is singular the GMRF model can
be represented by the IAR.
To incorporate IAR models within the GAMLSS model (1), set Z to be an index
matrix defining which observation belongs to which area, and let γ be the vector
of q spatial random effects and assume γ ∼ Nq(0, λ−1G−1). In the following IAR
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model, the matrix G contains the information about the neighbours (adjacent
regions), with elements given by Gmm = nm where nm is the total number of ad-
jacent regions to region m and Gmt = −1 if region m and t are adjacent, and zero
otherwise, for m = 1, . . . , q and t = 1, . . . , q. This model has the attractive prop-
erty that conditional on λ and γt for all t 6= m, then γm ∼ N(

∑
γtn
−1
m , (λnm)−1)

where the summation is over all regions which are neighbours of region m.

4 The data set

The data set consists on the Parana infant mortality data (a region in Brazil) from
2010 with variables: Infant Mortality: number of infant deaths, bornAlive:
number of children born alive, Firjan Index of city development, illiteracy: in-
dex of illiteracy, GNP: gross national product, children-low income (cli): pro-
portion of children living in a household with half the basic salary, population:
number of people, Poor: Proportion of individuals with household income per
capita equal to or less than BRL 140.00 monthly, fd: factor for each city (pro-
vides the spatial explanatory variable). The R implementation of the IAR model
as a predictor term for any parameter of the distribution of the response variable
in a GAMLSS model is achieved by the R package gamlss.spatial. The beta
binominal (BB) (Rigby et al, in press) final chosen fitted model is given by

Y |N ∼ BB(N, µ̂, σ̂),
logit(µ̂) = −3.6281 + h11(log(Pop)) + 0.3039 log(cli) + s(fd)
log∗(σ̂) = −9.879 + s(fd).

where the h function is a smooth non-parametric function and s is an IAR spatial
smoothing function and log∗(σ̂) = log∗(σ̂ − 0.00001) is specified by the link
function logshiftto0 in the gamlss to avoid the value of positive parameters
reaching too close to zero. Figure 4 shows the fd effect on logit(µ̂) and the fd
effect on log∗(σ̂) where we can see that the infant mortality is higher in north
and northwest region than the southeast region, and the variability is higher in
north and southeast regions than in the west region of the Parana state.
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FIGURE 1. The fitted spatial effect for µ (left) and σ (right).

In the residual analysis we can see that the model fits well to the data, even
though it is not perfect in the modeling of the variance in regions with low
population.
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5 Conclusion

The advantage of modelling spatial data within GAMLSS is that different distri-
butions can be fitted and also it is possible, if needed, to model spatially any or
all the parameters of the distribution.

Acknowledgments: The partial financial support from Fundação Araucária
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Abstract: Matched sample studies have become popular in a wide range of
applications especially those dealing with categorical variables. In this context, it
is common to investigate if the marginal distributions are the same, the so-called
Marginal Homogeneity (MH) hypothesis. Classical approaches to the problem
of testing MH rely on the asymptotic (or approximate) distribution of the test
statistics which may yield imprecise results in certain situations. To overcome
these limitations, we develop the Full Bayesian Significance Test (FBST) for MH
in two-dimensional contingency tables. The FBST is a procedure that has some
important features such as: (i) it does not rely on asymptotic distributions (ii)
it does not depend on the elimination of nuisance parameters (iii) it produces
coherent results for nested hypotheses. Furthermore, we calculate p-values and
compare them with the FBST. To summarize, we propose a coherent measure of
evidence to test MH and compare it with classical approaches to the problem.,

Keywords: Marginal homogeneity; Categorical Data; Full Bayesian Significance
Test.

1 Introduction

1.1 The Marginal Homogeneity Test

The problem of comparing the marginal discrete distributions for two paired-
samples plays an important role in a variety of subjects such as: genetics, demog-
raphy, politics and psychology (Agresti, 2002). We next present another example
to illustrate the MH test as well as the techniques to be presented.

Example 1.1: Table 1 presents frequencies regarding the vision quality of the
left and right eye for a group of 7477 women during the Second World War
(Stuart, 1953). Let C = {Highest , Second, Third, Lowest} be the set of possible
accuracies for each eye. In this context, considering a multinomial model we have

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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that the parameter space is: Θ = θ = (θ11, θ12, . . . , θ14, . . . , θ41, θ42, . . . , θ44) ∈
R16

+ ,
∑4
i=1

∑4
j=1 θij = 1}, where θij is the probability that the individual’s right

eye vision is classified in the j-th category of C and the left eye quality is
classified in the i-th category of C, ∀i, j = 1, . . . , 4. The sample space is: χ =
{(n11, n12, n13, n14, . . . , n41, . . . , n44),∈ N16 :

∑4
i=1

∑4
j=1 nij = 7477}, where nij

represents the count of cell (i, j), i, j = 1, . . . , 4.

TABLE 1. Unaided distance vision of 7455 women in Britain (Stuart, 1953)

Highest Second Third Lowest Total

Highest 1520 266 124 66 1976
Second 234 1512 432 78 2256
Third 117 362 1772 205 2456
Lowest 36 82 179 492 789

Total 1907 2222 2507 841 7477

In this scenario, one hypothesis of interest is H : θi+ = θ+i, i = 1, 2, 3, where
θi+ =

∑k
j=1 θij and θ+i =

∑k
j=1 θji, that is, H means that individuals have the

same individuals have the same quality in both eyes (marginal homogeneity). A
further hypothesis that is common to be investigated in matched-sample studies
is H ′ : θij = θji, (i, j) ∈ C × C such that i 6= j, which is called symmetry. The
p-value obtained from the likelihood ratio test for H (Madansky, 1956) is equal
to 0.009. Additionally, using a generalization of McNemar test (Bowker, 1948),
the p-value for H ′ is 0.080. Hence, adopting a 5% (or even 1%) significance level,
we conclude simultaneously that the distributions of the qualities of vision are
different, while the corresponding joint distribution is symmetric, which seem to
be inconsistent because H ′ ⊂ H (Agresti, 2002).

1.2 The Full Bayesian Significance Test (FBST)

The FBST (Pereira and Stern, 1999) was developed as an alternative to overcome
some difficulties usually met by frequentist and bayesian tests. Suppose a bayesian
statistical model, i.e., Θ ⊂ Rk is the parameter space and χ ⊂ Rk is the sample
space. Also, f(θ) is a prior probability density over Θ and Lx(θ) is the likelihood
function generated by an observation x ∈ χ. Consider that a sharp hypothesis
H : θ ∈ Θ0 (that is, dim(Θ0) < dim(Θ)) is to be tested. The FBST is based on
the measure of evidence, called e-value, described in the sequel. To calculate the
e-value, let f(θ|x) be the posterior density function for θ given by

f(θ|x) ∝ f(θ)Lx(θ).

Let Tx = {θ ∈ Θ : f(θ|x) > supθ∈Θ0
f(θ|x)} be the tangential (to Θ0) set which

is composed of the points in parameter space that are more consistent with x
than the posterior mode under the null hypothesis. The e-value in favor of H is
defined as

ev(Θ0;x) = 1− P (θ ∈ Tx|x).

As defined by Pereira and Stern (1999), the FBST is the procedure that rejects
H whenever ev(Θ0;x) is small. In addition, it should be emphasized that the
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posterior density is the only requirement to calculate e-values. In the next section,
we develop the FBST for MH in two-way contingency tables.

2 The FBST for Marginal Homogeneity

Suppose a random vector X|θ ∼ Multinomial(n,θ), θ = {θ = (θ11, . . . θkk) ∈
Rk

2

+ ,
∑k
i=1

∑k
j=1 θij = 1} and the sample space is χ = {(n11, . . . , nkk) ∈ Nk×k :

n++ = n}. The marginal homogeneity hypothesis is written as

H : θi+ = θ+i, i = 1, . . . , k − 1.

Suppose that θ ∼ Dirichlet(a). Then, by using Bayes’ Theorem, we have that the
kernel of the posterior density is

f(θ|x) ∝
[ k∏
i=1

k∏
j=1

θ
nij+aij−1

ij

]
1Θ(θ).

Thus, θ|x′ ∼ Dirichlet(x′), where x′ = (n11+a11, n12+a12, . . . , n1k+a1k, . . . , nk1+
ak1, . . . , nkk + akk).To obtain comparisons with frequentists solutions, we define
aij = 1, ∀ i, j ∈ {1, . . . , k}. To calculate the e-value in favor of the marginal
homogeneity hypothesis for two-dimensional contingency tables, it is necessary
to specify the tangential set Tx for Θ0. In order to do so, we first need to maximize
the kernel of the log-posterior density that is

Maximize

k∑
i=1

k∑
j=1

(nij + aij − 1) log θij

subject to k constraints θi+ = θ+i, i = 1, . . . , k − 1 and
∑k
i=1

∑k
j=1 θij =

1. Using a vector of Lagrange Multipliers λ = (λ0, λ1, . . . , λk−1), we need to
maximize

L(θ, λ) =

k∑
i=1

k∑
j=1

(nij + aij − 1) log θij − λ0

(
k∑
i=1

k∑
j=1

θij − 1

)
−
k−1∑
l=1

λl(θl. − θ.l).

It is easy to show that λ0 = n, θ̃ii = nii+aii−1
n

, i = 1, . . . , k, which is equal to

the corresponding coordinate of the posterior mode, and θ̃ij =
nij+aij−1

n+λi−λj
From Equation 6, it is possible to obtain the Lagrange Multipliers regardless of
θ. Next, we use Equation 5 to determine the estimator of θ under H.
After finding the maximum of the posterior density under H, we need to calculate
the posterior probability of the tangential set, P(θ ∈ Tx|x). We perform this
calculation by means of Monte Carlo method: we generate θ1, θ2, . . . , θM of the
posterior density and compare their densities with the maximum density under
H. Let θ∗ = arg max{π(θ|x) : θ ∈ Θ0} and define

1A(θi) =

{
1, if f(θi|x) ≥ f(θ∗|x),
0, otherwise,
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i = 1, . . . ,M .
Thus, we approximate the evidence ev(Θ0;x) in favor of the marginal homogene-
ity hypothesis for a k× k contingency table using the Monte Carlo Method, that
is,

ẽv(Θ0;x) = 1−
∑M
i=1 1A(θi)

M
.

In Example 1.1, the evidence for marginal homogeneity is ev(Θ0;x) = 0.68
whereas for symmetry is ev(Θ′0;x) = 0.20, leading us to conclude that the data
give more evidence to support MH hypothesis than the Symmetry hypothesis.
Note that the generalization for k-way contingency tables is trivial.
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Abstract: In this work, the data concerns the severity of lesions related to the
behaviour of pigs. The experimental design corresponded to two levels of environ-
mental enrichment and four levels of genetic lineages in a completely randomized
2×4 factorial. The data was collected longitudinally over four time occasions. We
consider the use of transition models for analysing these data. The methodology
allows for the choice of a model that can be used to explain the relationship be-
tween the severity of lesions in the pigs and the use of environmental enrichment.
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1 Introduction

There is much interest in studies related to the behavior of animals in various
areas such as cattle, goat, pig, and fish farming driven by concern for animal
welfare and for improved production and reproductive value. The development
of models and statistical methods in this area is also an object of interest. An
intrinsic characteristic of the response data measured in these studies is that they
are on a nominal or ordinal scale (categorical data).
Another characteristic inherent in these studies is that they are longitudinal,
so there is the need to consider a possible correlation between the observations
made on the same animals. Two model classes commonly used for longitudinal
data analysis are marginal models (Liang and Zeger, 1986) and random effects
models (Diggle et al. 2002, Molenberghs and Verbeke, 2005). However, there
are situations where it is likely that the state of an individual on the previ-
ous occasion influences the individual’s current state. The interest is in what
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happens to the categorical responses from one moment to another and to as-
sess the possible effects of covariates. To meet this goal, we consider the use
of Markov transition models (Ware, Lipsitz and Speizer 1988, Lindsey 2004).
These models are based on stochastic processes. Here, we consider a discrete
time process with discrete state space and a first-order Markov assumption,
that is the transition probabilities at time t only depend upon the current state
with πab(t − 1, t) = P (Yt = b | Yt−1 = a), with a, b ∈ S = {1, 2, . . . , k} and
t ∈ τ = {0, 1, . . . , T}. To simplify the notation, we write πab(t− 1, t) = πab(t) for
the transition probability at time t from state a to state b. This work presents
an extension of the proportional odds model for this transition model setting.

2 Material

The data are the result of research conducted by Castro (2015), during the months
of March to July 2014 at a commercial farm group in Brazil. The treatment
structure was in a 2× 4 factorial, with factors: Environmental enrichment levels:
E1 with and E2 without; Genetic lineage levels: L1 a synthetic line; L2 from
crossing two distinct lineages (Pietrain); L3 from the Landrace line; and L4 from
the Large White line. In all, 124 animals were used across the eight treatment
combinations. Each treatment combination consisted of a pen with 16 animals,
with the animal being considered as the experimental unit. The response variable
of interest is a score measuring lesions on the front of the animal, that were
classified as follows: 0 an absence of lesions; 1 a moderate degree of lesions; and
2 for serious lesions. Four monthly evaluations were made over the duration of
the study.

3 Methods

We consider the proportional odds model (McCullagh, 1980) for the ordinal re-
sponse and incorporate the longitudinal dependence using a Markov chain model
by including the response category at the preceding time as a covariate. In this
context, xit = (xit1, xit2, . . . , xitp, xit(p+1))

′ is the vector of (p + 1) covariates
associated with the ith individual at the tth transition, where xit1 denotes the
previous state. The model is:

η = log

(
γab(t)(x)

1− γab(t)(x)

)
= λabt + δ′tx

where λabt is an intercept and δ′t = (αt, β1t, . . . , βp,t) is a vector of unknown
parameters. The transition cumulative probabilities are specified by:

γab(t)(x) =
exp(λab(t) − δ′tx)

1 + exp(λab(t) − δ′tx)
b = 1, 2, . . . , k − 1,

where γab(t)(x) = P(Yjt ≤ b | x) = πab(t)(x) + . . .+ πab(t)(x), b = 1, . . . , k − 1.
Here, with just four time occasions there are only three transitions of order one
and so it is not sensible to consider higher order chains. In addition, for simplicity,
we also assume stationarity. Several models are considered; Model 1: all main
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effects and interaction between lineage and enrichment; Model 2: all main effects
and no interaction; Model 3: no lineage effect; Model 4: only the previous response
covariate; Model 5: interaction between enrichment and previous response. For
example, the linear predictor for model 5 is:

ηlts = λab − [βe enrichmente + βsprevious responses +

+ βesenrichment ∗ previous responsees]

with l = 1, 2, 3, 4; e = 1, 2; and s = 0, 1, 2. For fitting these transition models we
used the package ordinal (Christensen, 2011) available in R software (R Devel-
opment Core Team). Model selection based on likelihood ratio tests leads us to
choose Model 5.

4 Results

Table 1 shows the parameter estimates for the selected Model 5, in particular
we see the significance of previous response and how much it may influence the
effect of the enrichment covariate.

TABLE 1. Parameter estimates and Standard errors (s.e.) for the selected tran-
sition Model 5.

Parameters Estimates s.e. p-value

λa1 0.2522 0.2520
λa2 2.7404 0.2937

enrichment(E2) 0.6341 0.4035 0.1160
previous response(1) 0.8617 0.3232 0.0076
previous response(2) 0.7408 0.4283 0.0837
previous(1):enrichment(E2) −0.6451 0.4987 0.1957
previous(2):enrichment(E2) 0.8144 0.5815 0.1613

Table 2 gives the fitted transition probabilities from Model 5 and shows that given
that an animal is in the good condition (state 0), with environmental enrichment,
it has probability 0.5627 to continue in the same condition, whereas if it has
no environmental enrichment, this probability falls to 0.4056. Whereas if the
precondition of the animal is bad (state 2), it has probability 0.3802 to change
to the good state, while without environmental enrichment this probability falls
to 0.1259.
It was found that the use of environmental enrichment is beneficial and gives
some degree of animal protection, in that if an animal has good or severe lesions
then the probability that it will move to a better state is, in general, higher than
for the animals receiving no enrichment.

Acknowledgments: Special Thanks to the funding agency FAPESP (São
Paulo state, Brazil)
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TABLE 2. Estimates of the transition probabilities by Model 5.

Enrichment
E1 E2

Future
Response 0 1 2 0 1 2

Previous 0 0.5627 0.3766 0.0606 0.4056 0.4858 0.1084
Response 1 0.3521 0.5153 0.1325 0.3546 0.5140 0.1312

2 0.3802 0.5005 0.1192 0.1259 0.5084 0.3656
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Abstract:
Background:The understanding of functioning in SCI is necessary for planning
and organization of health services provisioning, social policy and rehabilitation
management. The SwiSCI Cohort Study aimed to respond to this necessity by
collecting the most relevant information on functioning of people with SCI living
in Switzerland.
Objective: To describe and understand functioning in people with SCI living in
Switzerland.
Methods: Data from the Swiss Cohort Study Community Survey was used.
Firstly, descriptive statistics were used to summarize the sample characteristics.
Secondly, a univariate analysis was considered for calculating the prevalence of
relevant problem in each functioning aspect. Thirdly, graphical model was ap-
plied to visualize the association structure.
Results: Overall, 1549 persons participated in the Survey, with 71.5 % male
and median age of 52 years. Approximatively 69 % had paraplegia and 58 %
incomplete lesions. The functioning areas where more than 60 % persons re-
ported problems or limitations were: sexual functions, spasticity, chronic pain,
bladder dysfunction, bowel dysfunction, tireness, stairs, doing housework, sports,
activities outdoors. Mental health, transfer, washing and dressing are connected
components shown when visualizing functioning in people with SCI.
Conclusions: Graphical models can be used to describe and understand func-
tioning in people with SCI.

Keywords: Spinal Cord Injury; Prevalence; Graphical Model; Functioning
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1 Materials and Methods

1.1 Subject Characteristics

Data from the Swiss Cohort Study Community Survey was used. The source of
subjects for this study was the Swiss Paraplegic Association, 3 specialized SCI
rehabilitation centres, and a SCI-specific home care institution (Brinkhof, 2016).

1.2 Measures

Demographic information was collected within the Starting Module of this sur-
vey: gender, age, SCI aetiology (traumatic and non-traumatic), and lesion group
(paraplegia and tetraplegia).
In the Basic Module Survey respondents were asked about the presence and sever-
ity of difficulties/problems in functioning in their everyday life. Reliable and valid
instruments were used to operationalize functioning: SCI Secondary Conditions
Scale,Self-Administered Comorbidity Questionnaire, 36-item Short Form, SCI In-
dependence Measure Self-Report, Utrecht Scale for Evaluation Rehabilitation-
Participation.

1.3 Statistical Analysis

Firstly, descriptive statistics were used to summarize the sample characteristics.
Secondly, a univariate analysis was considered for calculating the prevalence of
relevant problem in each functioning aspect. For this purpose, the dichotomiza-
tion strategy was applied for each question, where 0 = non existing or insignificant
and 1 = existing and relevant problem/limitation . Thirdly, the undirected graph
model, called skeleton, was estimated using the PC algorithm implemented by
Kalisch et al for visualizing the association structure (Kalisch, M et al, 2007).

2 Results

Table 1 shows descriptive characteristics of the population.
Figure 1 shows that sexual functions, spasticity, chronic pain, bladder dysfunc-
tion, bowel dysfunction, tireness, stairs, doing housework, sports, activities out-
doors, are the most ofen reported functioning areas with problems or limitations.
In the Figure 2 the association structure between aspects of functioning is pre-
sented. Mental health, transfer, washing and dressing are connected components
shown when visualizing functioning in people with SCI.
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TABLE 1. Characteristics of study participants (n=1549)

Characteristic N %

Male 1107 71.5
Female 442 28.5
Age (years, median) 52
Paraplegia, incomplete 577 37.5
Paraplegia, complete 486 31.6
Tetraplegia, incomplete 314 20.4
Tetraplegia, complete 160 10.4
Traumatic 1202 78.4
Non-traumatic 332 21.6
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FIGURE 1. Prevalence and 95% confidence interval of reported problems or
limitations in various functioning areas.
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Abstract: The choice of our topic is due to the recurrence of financial crises.
The world today is deeply unstable and subject to uncertainties and big surprises.
Finance is known for two regimes: state of stability and state of crisis. Therefore,
in order to understand the cyclical asymmetries in the series of yields of the main
indices of the world, one has to resort to non-linear specifications that distinguish
between upswings and downturns. We estimated a switching model in both states
and with a specification autoregressive of order 1, the monthly first difference of
the S&P 500 during the period running from December 1999 to December 2015.
This model allowed us to confirm the existence of two regimes distinct on the
Wall Street Stock Exchange, namely the state of crisis and that of stability. It
allowed the detection of three bubbles: the dot.com bubble (1998-2000), the real
estate bubble (1995-2006) and the Chinese financial bubble (2014-2015). Indeed,
the probability of being in crisis phase (probability smoothing) is greater than
0.6 after the crisis of TMT (2000-2001), after the financial crisis between 2007
and 2008, after the European debt crisis in 2010 and after the Chinese financial
crisis in 2015.

Keywords: Markov regime switching model; Speculative bubbles.

1 Introduction

During the last twenty years, no fewer than ten financial crises: the collapse of
Barings Bank in 1995, the Mexican crisis between 1994 and 1995, the Thai crisis
between 1997 and 1998, the Russian crisis in 1998, the near collapse of LTCM in
1998, bursting the Internet bubble between 2000 and 2001, the Argentine crisis
between 2001 and 2002, the financial crisis between 2007 and 2008, the sovereign
debt crisis in the euro area began at the end of 2009 and the bursting of the

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
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Chinese financial bubble in 2015. This litany of financial crises shows indeed that
our universe became turbulent and marked by the unthinkable.
The world today is deeply unstable and subject to uncertainties and big surprises.
Finance is known for two regimes : state of stability and state of crisis. Therefore,
in order to understand the cyclical asymmetries in the series of yields of the main
indices of the world, one has to resort to non-linear specifications that distinguish
between upswings and downturns.
Having enjoyed success in the analysis of quarterly gross domestic product of
the United States, the Markov switching model (Hamilton(1989)) constitutes
adequate econometric tool to be taken into consideration for cyclical asymmetries
in the series of our variable, namely: the monthly first difference of the S&P 500,
that is to say the nonlinearity in this serie. This is an approach which can identify
and detect turning points in both peaceful and crisis phases of financial time
series.
In this article, we focus on the detection of financial shocks and speculative
bubbles by the Markov switching model.

2 Application of the Markov regime switching model

Inspired by Hamilton (1989), we will estimate a switching model in both states
and with a specification autoregressive of order 1, the monthly first difference of
the S&P 500 during the period running from December 1999 to December 2015.

TABLE 1. Estimation of the Markov regime switching model.

Coefficient Estimated coefficient of Markov regime switching model

µ0 21.80178
[0.0000]

µ1 -75.87128
[0.0000]

β -0.198561
[0.0068]

ln(σ) 3.696109
[0.0000]

Where: [.] is critical probability;

DS&P500t = µ0(1−St) +µ1St + β(DS&P500t−1−µ0(1−St−1)−µ1St−1) + εt

with: εt ∼ N(0;σ2); St ∈ {0; 1} where the state St = 1 is the crisis regime and the
state St = 0 is the stability regime; Pij = Pr(St = j/St−1 = i) is the probability
of moving from state i to state j and

∑1
j=0 Pij = 1 for i ∈ {0; 1}; that is to say:

P01 = 1− P00 and P10 = 1− P11; and P00 = 0, 9146 and P10 = 0, 3871.

After the analysis of this model, the first outcome is that the estimated parame-
ters are significant at the 5% statistical; and, secondly, that there are changes in
different schemes in the first difference of the S & P 500. In fact, there are two
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states : an optimistic or stable state, positive average equal to 21.80, and another
pessimistic or crisis, negative mean of - 75.87. In addition, the state of stability,
which has a transition probability of P00 = 0.9146, is more persistent compared
to the crisis, which has a transition probability of P11 = 0.6129. Moreover, the
unconditional probabilities of the state of stability and the crisis, which are equal
to π0 = 1−P11

2−P11−P00
= 0.8193, π1 = 1−P00

2−P11−P00
= 0.1807 respectively and indicate

that, for a given sample of the first difference of the index of S & P 500 close to
18.07 % of the observations should be in a state of crisis. It was also found that the
conditional expected duration in the state of crisis equals 2.58 months. That is to
say, we can expect, on average, a high volatility period lasts about two and a half
month. It should also be noted that Wall Street Stock Exchange has a chance to
move from the state of crisis in t-1 to the state of stability (P10 = 0.3871) greater
than the chance of moving from the state of stability in t-1 to the state of crisis
(P01 = 0.0854).

FIGURE 1. Smoothed probability of the crisis regime

Where : Pr(St = 1|DS&P500t; θ) is the smoothed probability of the crisis regime;
and θ = (µ0, µ1, β, σ

2, π0, π1)′ is the vector of parameters to be estimated.

Given the evolution of the probability of being in crisis phase in the Wall Street
Stock Exchange (Figure 1), we can detect that this probability is greater than or
equal to 0.6 for high volatile periods of the first difference of the S & P 500, after
the crisis of TMT between 2000 and 2001, after the financial crisis between 2007
and 2008, after the European debt crisis in 2010 and after the financial crisis in
China in 2015.

3 Conclusion

All financial crises which occur between the periods 2000 and 2015 were detected
by the Markov switching model. Our model has allowed the detection of four
financial crises in 2001, 2008, 2010 and 2015, respectively, after the bursting
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of the Internet bubble (1998-2000), the bursting of the housing bubble (1995-
2006),the European debt crisis in 2010, and the bursting of the Chinese financial
bubble in 2015. Moreover, one can expect, on average, a high volatility period
lasts about two and a half month. It should also be noted that Wall Street Stock
Exchange has a chance to move from the state of crisis in t-1 to the state of
stability (38.71%) greater than the chance of moving from the state of stability
in t-1 to the state of crisis (8.54%).
Certainly, knowledge of financial shocks that may occur allows taking proactive
measures to ensure financial stability. However, their forecasts are very delicate.
Evidenced, questioning ”why no one did not see this crisis coming?”, and sending
in November 2008 by Queen Elizabeth to professors from the famous University
London School of Economics. In addition, Isaac Newton, part of investors ruined
when the bursting of the bubble of the Companion of the South Seas in 1720,
confesses: ”I can measure the motions of heavenly bodies, but I cannot measure
human nonsense”.

Acknowledgments: Special Thanks to the Organizing and Scientific Com-
mittees.
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Abstract: In the last years the introduction of endoscopic intrarenal surgery
(RIRS) has reduced the need for percutaneous treatments. Moreover, it has been
suggested as an alternative treatment for patients with stones larger than 2 cm
in diameter. The aim of this study is to identify which type the patients can reap
the benefits from RIRS, as well as those that are better off by a percutaneous
procedure, in terms of a stone free outcome of the procedure, postoperative com-
plications, such as sepsis, and operative time. A total of 106 patients with renal
calculi were treated with RIRS. The overall stone free rate was 77%. In patients
with stone diameters below 2 cm the stone free rate was 85%, which decreased
to 55% for stones over 2 cm. The infundibular length (p-value 0.186), width (p-
value 0.2074), angle (p-value 0.252), volume (p-value 0.3573) and stone density
(p-value 0.7784) did not correlate with overall stone free status. Considering only
patients with stones in the lower calyx, smaller infundibular angles negatively in-
fluenced the stone free rate (p-value 0.001). Operation time was less in the stone
free patients (p-value 0.0003) and a positive correlation with stone size (p-value
0.0002) was found. In patients with DJ the incidence of sepsis was 57%, which
was 24% for those with nephrostomy and 14% in all others. We conclude that the
factors that influenced stone free rate of RIRS are stone diameter, the number
of stones and, when urinary stones are present in the lower calyx. The effect of
stone density on the stone free probability is non-monotone.

Keywords: Generalized additive modelling, retrospective clinical trial, RIRS,
stone free, sepsis.
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1 Introduction

Retrograde intrarenal surgery (RIRS) with holmium laser lithotripsy is widely
considered an alternative to percutaneous litholapaxy (PCNL) for patients with
renal stones that are resistant to extracorporeal shockwave lithotripsy (ESWL).
For such patients with lower calyx stones smaller than 1 cm retrograde surgery
can be considered a first choice treatment with an effectiveness similar to PCNL,
but with a lower comorbidity. Whether RIRS can be considered an alternative
to percutaneous treatment even in the presence of renal stones between 1-2 cm
is a matter of discussion, as international guidelines do not express a preference
between two procedures (Turk et al. 2014).
In this study we are evaluating the effect of the number of stones, their lo-
cation, maximum diameter, volume, area, stone density and calyceal anatomy
(infundibular length, width and angle) to identify the parameters that are pre-
dictive of stone free rate (SFR) in a RIRS intervention. The aim of the study is
to identify the relevant patient features to see who can reap the benefits from
RIRS and who might be better off by the traditional percutaneous procedure. In
addition, the influence of these parameters on operative time and the onset of
postoperative complications with particular attention to sepsis are analyzed.

2 Data and Statistical Analysis

A retrospective analysis of 106 patients who underwent RIRS interventions (sin-
gle or multiple) between March 2011 to December 2013 for the treatment of
kidney stones in urology unit of Cannizzaro Hospital in Catania was performed.
The statistical analysis was performed using the statistical software package R
(version 3.0.3). P-values smaller than 0.05 were considered statistically signifi-
cant. To assess the relationship between the stone free (SF) rate and measures
of stone burden (i.e. number of stones, stone density and stone diameter) a gen-
eralized additive model with a logistic link function was used. The final model
was selected using Generalized Cross Validation (GCV) for obtaining a robust
predictive model.

logit [PSF (x)] = S1 (x1, x2) + S2 (x3) (1)

where

S1 (x1, x2) =

k1∑
j=1

k2∑
l=1

bj (x1) bl (x2)βjl,

k1, k2 = 5

S2 (x3) =

k3∑
i=1

bi (x3)βi,

k3 = 10

3 Results

3.1 Joint Analysis of stone burden on stone free rate

The joint analysis reveals that effect is highly non-linear (figure 1(b)).
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FIGURE 1. (a) joint effect of stone diameter and number of stones on RIRS
success (b) Dependence of stone free probability after three months on mean
stone density: for a patient with 2 stones and stone diameter of 2 cm.

3.2 Factors affecting RIRS complications

Table 1: Prediction table of sepsis incidence based on DJ status, age and
gender.

Age
DJ status Sex 20 40 60 80

M 42% 23% 10% 4%
DJ

F 64% 41% 22% 10%

M 27% 13% 6% 2%
non-DJ

F 47% 26% 12% 5%

4 Discussion

Intrarenal retrograde laser lithotripsy and SWL are considered the treatment of
choice in patients with renal stones with a diameter smaller than 1 cm, whereas
EAU guidelines recommend percutaneous procedures in patients with stones over
2 cm. The guidelines are impartial when it comes to stones between 1 and 2 cm,
if there are no further factors. However, in the presence of a lower pole stone
between 1 and 2 cm the endourological treatment is recommended as treatment
of first choice, as the SWL is less effective in those circumstances. The reason is
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the high percentage of residual fragments after a SWL intervention, which can
be exacerbated by large stone sizes, dense composition and the particulars of the
pyelocalyceal anatomy.
In our study we have found that stone diameter (p-value 0.001) and the number
of stones in pelvis and calices (p-value 0.017) influence stone free rate. Increasing
the stone diameter and the number of stones, the probability of a stone free
outcome of the RIRS intervention decreases. The calyx anatomy seems not to be
particularly relevant. The mean IL is lower (24.5±4.9 vs 25.7±3.8) and the IPA
is greater (52.3±24.2 vs 48.0±27.9) in the stone free group than in the non-stone
free group, but the difference is statistically not significant. The only thing that
seems to have an influence on the success rate is when a stone is present in the
lower calix, which has an acute (< 38.20) infundibulopelvic angle: this negatively
influences the stone free rate. In our study we observed that patient with a DJ
stent have a high probability of sepsis. Younger and female patients have a higher
sepsis rate than older ones and males. The incidence of sepsis in older patients
decreases (p-value 0.026). In addition, even in the DJ group women still have a
higher probability of having sepsis when compared to men. There are no evident
factors that could explain the major incidence in young and female patients.

5 Conclusions

In our study we found that the factors that deteriorate the stone free rate are
a higher stone diameter, a larger number of stones and when kidney stones are
present in the lower calyx with a sharp infundibular angle. Younger age, being fe-
male and having a pre-operative diversion increase the incidence of post-operative
sepsis.
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Abstract: Concentration measures order the statistical units under observation
according to their market share. This concept is of great importance and widely
applied in practical situations. Over time, certain representatives of classical ab-
solute concentration measures have proven to be useful. However, the formalism
of market concentration allows adaption. Here, we present a generalization where
an order according to an exogenous variable other than the market share is possi-
ble. The resulting generalized concentration index still fulfills the common axioms
of (classical) concentration measures and, hence, can still be interpreted like those
with the benefit of more precise interpretations and conclusions.

Keywords: Market concentration; Herfindahl index; Rosenbluth index; German
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1 Introduction

The concept of market concentration is generally well-established and has be-
come of great importance as it is applied in a variety of fields such as business
economics, sociology, sports and many more. Well-established concentration mea-
sures like the concentration ratio and the Herfindahl index are computed on the
statistical units ordered according to their market share in terms of “specific
goods”. From an economics point of view this modus operandi has nice proper-
ties; Saving (1970), for example, shows the relation between the Lerner measure
of the degree of monopoly and concentration ratios expressed by the market share
of the g largest enterprises.
However, to the best of our knowledge, existing concentration concepts do not
generalize to a second variable of interest, similar, e.g., to correlation or regres-
sion concepts. The central task of this work is to show that the basic concept of
measuring concentration can be extended within its classical framework in order
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copyright remains with the author(s). Permission to reproduce or extract any
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to take a second variable into account. This offers room for answering new ques-
tions and enables alternative interpretations within the framework of measuring
concentration. We generalize the definition of market concentration and allow
an order of the enterprises according to a second exogenous variable. Here, “ex-
ogenous” simply means “some other (external) variable” and does not concern
any information regarding independence or lack of correlation. This exogenous
order can be defined by any property of the enterprises—for example, the num-
ber of employees, a rating agency’s ranking, the geographical position from south
to north, or the enterprises’ environmental dues. We introduce an appropriate
concentration measure. Its main benefit is an additional gain of knowledge as it
measures concentration with respect to this exogenous variable. In certain sit-
uations, this is desirable and more meaningful than conventional measures. For
example, instead of the common analysis of a financial inequality concerning the
transaction volume among a group of enterprises, the new measure allows to
analyze this financial inequality with respect to e.g., the enterprises’ number of
employees, rating, market share, etc.
This generalization is a straightforward extension of the classical formalism and
we provide the formal concept definition. The rigorous proofs of the axiomatic of
(classical) concentration measures, and the implementation and application in the
R programming language (R Core Team, 2012) are found in Abedieh et al. (2013).
The validity of these axioms is particularly important as it ensures that the new
index still can be interpreted in the classical framework of concentration. We hope
that this work encourages users/researchers to think about market concentration
and concentration measures as a flexible formalism which can be adopted to
specific situations.

2 Concentration measures

In this section we review the formalism of classical absolute concentration mea-
sures and show common representatives. Given 1, . . . , n statistical units (e.g.,
enterprises), let X be a specific characteristic of the statistical units (e.g., market
share) and x1, . . . , xn positive realizations (observations). We denote the increas-
ing or, respectively, decreasing order of observations by

0 ≤ x(1) ≤ x(2) ≤ . . . ≤ x(n) and x(1) ≥ x(2) ≥ . . . ≥ x(n) ≥ 0,

With
∑n
i=1 xi > 0, the corresponding ordered relative sums of observations are

defined by

pi := x(i)

/ n∑
j=1

xj and ci := x(i)
/ n∑
j=1

xj , i = 1, . . . , n.

The vectors pppT = (p1, . . . , pn) and cccT = (c1, . . . , cn) represent the corresponding
successive sums. Using this formalism, we are able to define common measures
of concentration and present three absolute representatives.

Concentration ratio. The concentration ratio is defined as

CRg :=

n∑
i=n−g+1

pi =

g∑
i=1

ci, CRg ∈ [0, 1]. (1)



Groll et al. 51

Concentration ratios show the extend of control of the g largest statistical objects
and illustrate the degree of dominance. Based on the concentration ratios, the
inequality can be visualized by the concentration curve.

Concentration curve. Based on CRg the concentration curve is defined. The
height of the curve above any point x on the horizontal axis measures the per-
centage of the statistical unit’s (e.g., enterprises) total size accounted for by the
largest (with respect to the variable of interest, e.g., the market share) x units.
The curve is therefore continuously rising from left to right, but at a continuously
diminishing rate (compare Rosenbluth,1955). Hence, it graphically illustrates the
inequality among the statistical units in the sense that the concentration is higher
the smaller the area above the curve.
Herfindahl index (Hirschman, 1964). It is defined as

H :=

n∑
i=1

p2
i =

n∑
i=1

c2i ,

and results in values 1
n
≤ H ≤ 1. H is an indicator of the amount of competition

among the statistical units, i.e., represents the degree of concentration. In the
application example in Abedieh et al. (2013), it is then used as an indicator
whether there is a monopoly or a significant competition on the transfer spendings
of German Bundesliga soccer teams.

Rosenbluth Index (Rosenbluth, 1955, 1957). It is defined as

RB := 1
/(

2

n∑
i=1

i ci − 1
)

=
1

2A
, with A =

n∑
i=1

i ci − 0.5, 1 ≤ 2A ≤ n,

and results in values 1
n
≤ RB ≤ 1. RB denotes the area above the concentration

curve. It constitutes an alternative measure to investigate the absolute concen-
tration of a particular group of statistical units based on the kurtosis of the
concentration curve.

For both Herfindahl and Rosenbluth index, normalized versions exist:

H∗ := (H− 1

n
)
/

(1− 1

n
), RB∗ := (RB− 1

n
)
/

(1− 1

n
), H∗,RB∗ ∈ [0, 1].

Also the measures’ inverse, nH = 1/H and nRB = 1/RB, are of interest as they
can be interpreted as the “equivalent number of equal sized units”.
With the formalism introduced above, we now can define a measure based on the
corresponding concentration ratios for data with exogenous order.

3 Concentration for data with exogenous order

Given data x1, . . . , xn, their order based on an exogenous variable is denoted by

x[1], x[2], . . . , x[n].

Analogously, we assume
∑n
i=1 xi > 0 and define the ordered relative sum of

statistical units with respect to the exogenous order:

qi := x[i]

/ n∑
j=1

xj , i = 1, . . . , n.



52 Modeling Concentration in Data with an Exogenous Order

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Statistical units

O
R

g

● ●

●

●

●
●

●

●

● ●

●

● ● ●

●

● ●

● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B

FIGURE 1. Concentration curve for data with an exogenous order.

The vector qqqT = (q1, . . . , qn) collects all successive sums.

Concentration ratio. In analogy to the concentration ratio CRg we define the
exogenously ordered concentration ratio; characterizing which part of the sum of
objects lies on the group x[1], . . . , x[g]. We define

ORg :=

g∑
i=1

qi, ORg ∈ [0, 1] .

The ratio ORg allows new ways of interpretation compared to the classical con-
centration ratio CRg in (1), as it explains the proportion of the first g statistical
units on the overall sum with respect to the exogenous order.

Concentration curve. Based on ORg we define the exogenously ordered con-
centration curve. In contrast to (classical) concentration curves, ordered rela-
tive sums of objects according to the exogenous order form a curve which is
still monotone increasing but not necessarily concave. As a consequence the fre-
quency polygon can cross the diagonal from (0, 0) to (n, 1). Figure 1 illustrates a
schematic exogenously ordered concentration curve based on transfer spendings
of the German Bundesliga (season 2003/04).

Concentration index. We use the schematic exogenously ordered concentration
curve in Figure 1 to motivate the definition of an appropriate concentration index.
The inequality in data with an exogenous order is illustrated by the area B, which
lies above the exogenously ordered concentration curve. The following relation
holds: the smaller the surface, the bigger the proportion among the “first few”
statistical units. In the extreme case that the whole balance applies on the first
statistical unit, one obtains Bmin = 0.5. Note that the uniform distribution
does not represent one of the two extreme cases anymore. The inequality among
the first statistical units is now minimal, if the whole balance applies to the
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last statistical unit; in this case we obtain Bmax = n − 0.5. For the uniform
distribution we get qi = 1

n
∀i and the exogenous ordered concentration curve is

the diagonal with corresponding area B = n/2. In general, B is computed by

B =

n∑
i=1

iqi − 0.5.

Based on this area B, we introduce an index which captures the concentration
in data with an exogenous order:

OI(n;qqq) = 1
/

2B = 1
/

(2

n∑
i=1

iqi − 1) , OI(n;qqq) ∈ [
1

2n− 1
, 1] .

Now, the uniform distribution with B = n
2

results in OI(n;qqq) = 1
n

. For the sake
of simplicity we set OI := OI(n;qqq) wherever dependence on n and qqq is not crucial.
For interpretation, the following statements can be proposed:

OI ∈ ( 1
n
, 1] concentration on anterior statistical units

OI ∈ [ 1
2n−1

, 1/n) concentration on posterior statistical units

OI = 1/n no concentration, all statistical units have the same
proportion of the sum

In analogy to the classical concentration measures we define a normalized version
OI∗(n;qqq) as well as the measures’ inverse. Again, for convenience we use the
compact notation OI∗ := OI∗(n;qqq) wherever the dependence on n and qqq is not
crucial. The normalized version is (OI∗ ∈ [0, 1]):

OI∗ := (B − c)
/

(1− c) with c = 1
/

(2n− 1) ,

and the measures’ inverse, the “equivalent number of homogenous units”, is nOI =
1

OI
, with 1 ≤ nOI ≤ 2n − 1. Note that now the interpretation of the measures’

inverse nOI is subject to the following restrictions. Here, the extreme cases occur
if the whole balance applies to “the first” or “the last” statistical unit (in sense of
the exogenous order) resulting in nOI ∈ {1; 2n − 1}. Consequently, the uniform
distribution does not represent an extreme case anymore and can be interpreted
as a “medium concentration of the first statistical units” with the corresponding
equivalent number of homogenous statistical units being exactly equal to the
true number of statistical units, nOI = n. Furthermore, it is possible that the
equivalent number of homogenous units exceeds the actual number of statistical
units, i.e., nOI > n; if this occurs, the balance applies on the last statistical units.
In contrast we get nOI < n, if the balance applies on the first statistical units.
Axiomatic of the concentration index OI. Literature discusses and defines
a set of characteristics required by absolute concentration measures (see, e.g.,
Hannah and Kay, 1977; Encaoua and Jacquemin, 1980). The concentration in-
dex for exogenous ordered data OI satisfies these axioms—always with respect
to the exogenous order and, hence, still can be interpreted in the conventional
concentration framework. In Abedieh et al. (2013) we provide the rigorous proofs
of the axiomatic and explain them by the help of illustrative examples. Besides,
we present the implementation in the R programming language (R Core Team,
2012) together with an application to the transfer spendings of German Bun-
desliga soccer teams.
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Abstract: Clustered data are, nowadays, available in multiple disciplines. Sta-
tistical modeling of these data is usually performed using Generalized Linear
Mixed Models (GLMMs), proposed by Breslow & Clayton (1993), to account for
the hierarchical structure in the data. One problem of interest is to determine
whether, in the fitted model, the variance component (σ2) of the random effects
is statistically zero (that is, the random effect does not explain much of the vari-
ance and should be excluded from the model). In the literature, this feature is
assessed using a variance component test. Here we present the results of a sta-
tistical simulation study assessing the performance of two variance component
tests in the context of GLMMs, when a binary and Gamma response variables
are considered. In particular, the likelihood ratio (LR) and the permutation tests
are evaluated, and the impact of misspecifying the true distribution of the ran-
dom effects is measured as a function of the number of individuals per cluster
and the true value of σ2. We found that, for both response variables, the LR
and permutation tests are affected for the number of individuals per cluster and
the prespecified value of σ2, but have a similar behavior regardless of the true
distribution of the random effects.
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1 Introduction

Clustered data are commonly collected in studies on medical, social, and behav-
ioral sciences. This type of data arise when there is a hierarchical or clustered
structure in the data such as individuals nested in institutions or organizations
(i.e., students in schools, employees in firms, or patients in hospitals). Mixed
models, hierarchical models or multilevel regression models provide an attractive
framework to accommodate the overdispersion and dependence of this type of
data (Zhu & Zhang, 2006). Many of the models used in these fields fall under the
frame of Generalized Linear Mixed Models (GLMMs). A fundamental question
in this models is about the heterogeneity among clusters, which is equivalent
to test whether σ2, the variance component associated to the random effects, is
statistically zero. This test is known as a variance component test, and can be
approached using the likelihood ratio (LR) and permutation tests (LRs), and
have important implications in statistical modeling of clustered data. Here we
use a statistical simulation approach to determine, which of the aforementioned
tests is more appropriate to determine whether σ2 is effectively zero. To do this,
different statistical distributions and several prespecified values of σ2 are utilized
to generate the vector of random effects, followed by the underlying data to be
modeled.

2 GLMMs

GLMMs, proposed by Breslow & Clayton (1993), have been extensively in many
applications where clustered and/or longitudinal data are available. Let yij the
jth response variable within the ith cluster (i = 1, 2, . . . ,m; j = 1, 2, . . . , ni). In
a GLMMs with random intercept, it is assumed that, conditional to the random
effects bi, the outcome yij is independent with the following structure:

yij | bi ∼ independent in Fy,

g(µij) = Xijβ + bi,

bi
ind∼ N(0, σ2),

(1)

where Fy belongs to the exponential family, g(·) is a known link function, Xij

is the vector of covariates for the jth observation in the i cluster, and β is the
parameter vector for the fixed effects.

3 Variance component test

Among the tests available in the literature for testing

H0 : σ2 = 0 vs. HA : σ2 > 0, (2)

where σ2 is the variance of random intercept, the LR test is the most commonly
used test because of its theoretical properties and straightforward construction.
In a GLMM with random intercept, we are interested in testing H0 in (2) using
a type I error probability α. The statistic for the LR test is calculated as T =
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−2 log(L0/LA) where L0 and LA are the likelihood model under H0 and HA,
respectively. Under H0, the asymptotic null distribution of T is a GLMM with
random intercept is a 50:50 mixture between a χ2

0 and χ2
1 distributions (Zhang

& Lin, 2008). The permutation test (PT) is a modification of LR test proposed
by Fitzmaurice & Lipsitz (2007). The idea behind the PT is that, when H0 in
(2) is true, the heterogeneity between clusters is non-existing. This result implies
that we could mix the clusters without changing the decision. In what follows
we present the implementation of the PR given by Fitzmaurice & Lipsitz (2007).
First, calculate the LR test statistic in the original sample and denote it by
Tobs. Second, permute the cluster indexes while holding fixed the number of
units within a cluster, ni, and calculate the LR test statistic T . Third, repeat
step 2, M times, to obtain T1, T2, . . . ,M , where Tm is the LR statistic for the
mth permutation of the original clusters (b = 1, 2, . . . ,M). Fourth, determine
the PT p-value as the proportion of permutation samples where Ti ≥ Tobs for
i = 1, 2, . . . ,M .

4 Simulation study

In order to compare the two variance component tests, we consider a GLMM
with random intercept and a response variable following a binary and Gamma
distributions. In both cases, the random intercept was sampled from four true
statistical distributions (Normal, Log-Normal, Exponential and Uniform). For
the fitting procedure, normality of the random intercept was assumed. The model
considered in this case can be summarised as follows:

logit{P (yij = 1 | bi)} = β0 + βbetweenx1 + βwithinx2 + bi, (3)

where i = 1, 2, . . . ,m represents the cluster and j = 1, 2, . . . , ni represents
the number of observations per cluster. The between-cluster covariate x1 ∼
Poisson(λ = 2) and x2 is a within-cluster covariate following a U(0, 1) distri-
bution. The true model parameters are β0 = −2.5, βbetween = 2 and βwithin = 1.
Figure 1 displays the main results for the binary GLMM outlined in §3. Overall,
the average rejection rate (ARR) of H0 in (2) of the LR test and the PT are af-
fected for the number of individuals per cluster (parameter ni in our simulation
approach) and the pre-specified value of σ2, but have a similar behaviour regard-
less of the true distribution of the random effects. To directly compare the ARRs
between the LR test and PT, the ratio γ = ARRLR/ARRPT was calculated. Here,
values of γ > 1 indicate that the LR test outperforms the PT; values of γ < 1
indicate that the LR test outperforms the PT, and γ = 1 indicate that the LR
test and PT produce equivalent rejection rates. When the number of individuals
per cluster is small (that is, ni < 5), the PT has a higher ARR than the LR test
(see third column in Figure 1). Our results show that the LR test and PT are not
significantly affected by any of the aforementioned parameters, but that the PT
outperforms the LR test. This result has important implications when modelling
clustered and/or longitudinal data.
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FIGURE 1. ARR of H0 : σ2 = 0 in (2) in the binary GLMM as a function of ni
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Abstract: Zero inflated Poisson regression is a commonly used model to ana-
lyze data with excessive zeros. Although many models have been developed to
fit zero-inflated data, many of them strongly depend on special features of the
individual data. For example, there is a need for new models when dealing with
truncated and inflated data. In this paper, we proposed a new model with flex-
ibility to model inflations and truncations simultaneously, and the model is a
mixture of multinomial logistic and truncated Poisson regression, in which the
multinomial logistic component models the occurrence of excessive counts. The
truncated Poisson regression models the counts that are assumed to follow a trun-
cated Poisson distribution. The performance of our proposed model is evaluated
through simulation studies, and our model has smallest mean absolute error and
best model fit. In the empirical example, the data is truncated with inflated zeros
and fourteen and the result showed that our model exhibited a better fit than
other competing models.

Keywords: zero-inflated data; truncated data; Poisson regression.

1 Introduction

For zero-inflated data, zero-inflated Poisson model (ZIP; Lambert, 1992) and its
variants have become a popular tool for analyzing count data with excessive ze-
ros. The problem with ZIP is it can only model a single inflated value and the
inflated value has to be zero. Model with other inflated value other than zero have
been proposed by Famoye and Singh (2003), Bae and Famoye (2005) and they
considered data with a massive point K. The ZIP has been extended to a ZKIP
model by Lin and Tsai (2014) that models data with masses of zero and K con-
currently. The model is a mixture of multinomial logistic and Poisson regression,
in which the multinomial logistic component models the occurrence of excessive
counts, including zeros, K (where K is a positive integer) and all other values.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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Truncated data occurs when the subjects are observed within a certain time win-
dow. A subject whose event is not in this time interval will be not observed and
no information on this subject is available. Because the data is only available
within the observational window, the inference for truncated data is restricted to
conditional estimation. When the end point of the time window is defined, the
data is right truncated. For example, “Exactly, how many times have you been
laid off?” In this type of truncation, any subjects who experience the event of
interest after the truncation time are not observed and some justifications have to
be made to ensure the correct predictions beyond the time frame. In this study,
we extend the existing models through the flexibility of modeling inflations and
truncations of the data with excessive counts other than zeros. The model we pro-
pose is a mixture of multinomial logistic and truncated Poisson regression, while
the multinomial logistic component models the occurrence of excessive counts,
including zero and K. The truncated Poisson regression component models the
counts that are assumed to follow a truncated Poisson distribution.

2 Main Result

In this study, we proposed new models to fit data with truncated and inflated
values. We extended ZIP model for truncated Poisson distribution and proposed
an inflated truncated Poisson regression model. The model has two variations
under different conditions. The first derivation is zero inflated truncated Poisson
regression (ZITP) with one inflated point at zero and truncated at K. The second
derivation is zero-K inflated truncated Poisson (ZKITP) with two inflated and
truncated points: zeros and K. These models can be considered mixture models of
two parts. The first part of the models is to fit whether the inflated values occur or
not, and it is fitted by a binary logistic model for ZITP, and a multinomial logistic
model for ZKITP. The second part of the models handles the non-inflated counts,
which is fitted by a truncated Poisson regression model. We use data from the
Behavioral Risk Factor Surveillance System (BRFSS) to compare the fit of the
TP (truncated Poisson) model to those of ZITP and ZKITP. The variable used
to demonstrate the models was constructed from the question: “Over the last 2
weeks, how many days have you had trouble falling asleep or staying asleep or
sleeping too much?” There were 2171 subjects with valid responses, and 1322 that
reported zero (60.89%), 293 reported 14 (13.50%), and the rest reported between
1 and 13 days. In our case, the data were fitted to the TP, ZITP and ZKITP
models, with the age of the respondents as a predictor. The results of the model
fit and their MAE, MSE are presented in Table 1. Since the models are nested, a
likelihood ratio test can be performed for model comparison. Table 2 shows that
the log-likelihood comparison of TP vs ZITP is 8660.442, and ZITP vs ZKITP is
2872.215, and the degrees of freedom differ all by 2. The difference of twice the
negative log-likelihood between 2 models follows a chi-square distribution, and the
results showed ZITP outperformed TP, and ZKITP significantly improved ZITP
even further. The mean absolute error (MAE) is smallest for ZKITP, suggesting
that ZKITP is better at making predictions than the other two models. Figure 1
displays the predicted values by number of days had trouble falling asleep, and
the results show that the predicted values of ZKITP are closer to the observed
frequencies compared to the ZITP and TP for most situations, particularly for



Lin and Tsai 61

Days had trouble falling asleep

F
re

qu
en

cy

0 2 4 6 8 10 12 14

0
25

0
50

0
75

0
10

00
12

50 ZKITP
ZITP
TP

1322

95
153

93
60 37 20

54
9 3 25 1 5 1

293

FIGURE 1. The observed and predicted values by different models.

the two inflated values 0 and 14. The performances of ZITP is better than TP at
fitting zero, but not for 14, and TP fit poorly for both values.

TABLE 1. Performance of the three models.

Index ZKITP ZITP TP

AIC 6524.752 9392.968 18049.410
BIC 6558.850 9415.699 18060.775
MAE 19.506 75.395 204.528
MSE 717.632 10233.750 131624.000

TABLE 2. Model comparison of the three models.

Model Comparison LR-Test Statistic DF P-Value

TP vs ZITP 8660.442 2 < 0.0001
ZITP vs ZKITP 2872.215 2 < 0.0001
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Abstract: In this study we propose Bayesian hierarchical models to analyse the
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We take into account contextual factors that may explain these distributions
and also spatially structured and unstructured latent variables. The relationship
between both types of violence is also explored with shared component models.
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1 Introduction

Disease mapping and spatial regression with count data are widely used in epi-
demiology (Lawson et al., 1999). An increasing number of approaches have been
recently proposed for the analysis of spatially aggregated health count data with
refinements and generalizations. Those complex models open new possibilities in
other knowledge areas as for example the social sciences. Research from a spatial
perspective has shown social problems exhibit geographic variation. A growing
number of studies are using spatial Bayesian methods in the field of crime and
social problems with promising results (Law et al., 2014; Gracia et al., 2014).

2 Modelling family violence

We used as neighbourhood units the 552 census block groups in the city of Valen-
cia to study the geographical distribution of intimate partner violence and child
maltreatment. A Bayesian random-effects modelling approach was used to anal-
yse the influence of neighbourhood-level characteristics on small-area variations
in both aspects of family violence.
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Data for each response variable were counts for 552 census block groups; therefore
we assume a Poisson regression (Gracia et al., 2015):

yi|ηi ∼ Po(Ei exp(ηi)),

where the log-relative risk ηi is explained by the covariates X, a spatially struc-
tured term S and an unstructured term U , in the following form

ηi = µ+Xiβ + Si + Ui.

FIGURE 1. Maps of relative risks of intimate partner violence (up) and child
maltreatment (down) in the city of Valencia.

By estimating spatially structured and unstructured random effects, we aimed
to assess separately the influences of spatial dependency and independent het-
erogeneity. Figure 1 shows the maps of intimate partner violence and child mal-
treatment risks respectively. They present some similarities and also differences.
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Figure 2 shows the posterior mean of the spatial component of intimate partner
violence risk and child maltreatment. The geographical patterns are clearly dif-
ferent, but exhibit a certain complementarity. These results suggest the existence
of a relationship between the two processes.

FIGURE 2. Posterior mean of the spatial component of intimate partner violence
(up) and child maltreatment (down).

3 Multivariate spatial modelling

A joint spatial modelling of intimate partner violence risk and child maltreatment
is explored in order to assess the common structure and the particularities of each
kind of family violence.
Knorr-Held and Best (2001) analysed health data using a shared component
model. This model is similar in spirit to conventional factor analysis, and parti-
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tions the geographical variation of two response variables into a common (shared)
component and two response-specific (residual) terms.
Based on social disorganization theory combined with the available data, sev-
eral covariates at the neighbourhood level are used in the modelling. Different
approaches for incorporating the covariates are studied and compared.
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1 Introduction

Compound distributions (also known as stopped sum distributions) are discrete
distributions that are used in applications such as the branching process in ecol-
ogy (Neyman, 1939) and for risk assessment (Ager and Norman, 1964). Using
an ecological example, say there are N parent insects in a field, which follow a
discrete distribution, and these parents then independently give rise to offspring
(Xi), which follow another distribution. The total number of offspring, SN , follow
a distribution of the form:

SN = X1 +X2 + · · ·+XN

where i = 1, 2, 3, ..., N , and N is a random draw. The use of terms varies slightly
between authors, as this has been referred to as compound, mixture and stopped
sums in different cases (Johnson et al. 2005). Here we use the term ‘compound’
to denote such a distribution. A common compound distribution is the Neyman
Type A (compound Poisson-Poisson), in which the parent and offspring gener-
ations follow Poisson distributions with parameters λ and φ respectively, with
probability mass function (p.m.f.):

P (X = x) =
e−λφx

x!

∞∑
j=0

(
λe−φ

)j
jx

j!

We propose two variants that model the sum of parent and offspring generations.
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2 Compound model variants

There is already a compound variant which conforms to the zero restriction as-
sumption in the ‘traditional’ compound model, where a zero in the first gen-
eration will automatically result in a zero in the second generation. Unlike the
‘traditional’ compound model, this variant models the sum of parent and off-
spring generations, rather than just the offspring. This variant, known as SVA,
was previously introduced by Low et al. (2016). For example, the p.m.f. for SVA
Poisson-Poisson, (where λ and φ are the Poisson parameters for the two genera-
tions) is:

P (X = x) =


e−λ x = 0

x∑
j=1

e−λλj

j!

e−φφx−j

(x− j)! x 6= 0

The negative binomial (NB) model is commonly used to address overdispersion,
which is common in many discrete data sets. We also consider here three other
cases (in all cases below µ and α are the mean and dispersion parameters of the
NB distribution, with p = α/(µ+ α) and q = 1− p):

1. SVA Poisson-NB,

P (X = x) =


e−λ x = 0

x∑
j=1

e−λλj

j!

(
x− j + α− 1

α− 1

)
pαqx−j x 6= 0

2. SVA NB-Poisson,

P (X = x) =


pα x = 0

x∑
j=1

(
j + α− 1

α− 1

)
pαqj

e−λλx−j

(x− j)! x 6= 0

3. SVA NB-NB,

P (X = x) =


pα x = 0

x∑
j=1

(
j + α− 1

α− 1

)
pαqj

(
x− j + θ − 1

θ − 1

)
rθsx−j x 6= 0

In SVA NB-NB, the second NB distribution has parameters µ2 and θ, where
r = θ/(µ2 + θ) and s = 1− r

There is a second variant in which it is possible to obtain a non-zero second
generation even if a zero is obtained in the first, because in some applications
this situation is possible. The second variant is called SVB. For example, the
SVB Poisson-NB has p.m.f.:

P (X = x) =

x∑
j=0

e−λλj

j!

(
x− j + α− 1

α− 1

)
pαqx−j
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We also consider SVB NB-NB, which has p.m.f.:

P (X = x) =

x∑
j=0

(
j + α− 1

α− 1

)
pαqj

(
x− j + θ − 1

θ − 1

)
rθsx−j

Although SVB Poisson-NB and SVB NB-Poisson are the same, in general the
order of the distributions within the compound variants does matter.

3 Application and methods

Previous research (Low et al., 2016) shows that when these variant models are
fitted to data sets consisting of citation counts for sets of articles from the same
discipline and year, in many cases the AIC obtained is lower. Here, we further
investigate these proposed models using biodosimetry data previously collected
by Romm et al. (2013) and also analysed by Oliveira et al. (2016). The data set
contains the frequency of automatically detected dicentric chromosomes, which
were exposed to eight uniform doses of Cobalt-60 gamma rays. Similar to the
‘traditional’ compound model, our proposed models also account for the overdis-
persion, but have greater flexibility, thus could provide a suitable fit for this data.
In all cases, a log-link and the quadratic model:

Mean number of dicentric chromosomes ∼ dose+ dose2

are used, allowing us to obtain results that are comparable with those of Oliveira
et al. (2016). All models are fitted using code written by the first author in R (R
Development Core Team, 2014).

4 Results and conclusion

TABLE 1. ‘Traditional’ compound models fitted to biodosimetry data.

Models Parameters Log likelihood AIC BIC

Neyman type A 6 −3738.21 7488 7534
Compound Poisson-NB 9 −3734.25 7486 7555
Compound NB-Poisson 9 −3739.43 7497 7566
Compound NB-NB 12 −3739.57 7493 7585

Based on our initial results, the ‘traditional’ compound Poisson-NB gave the
lowest AIC, whilst Neyman type A produced the lowest BIC. However, the SVA
Poisson-Poisson gave the third lowest BIC (see Table 2). Overall our proposed
models have similar fits to the previously used model, especially in terms of log
likelihoods. However, the extra parameters in the variant models are penalised,
resulting in larger AICs. Diagnostic plots of distributions of residuals show that
the variant models and the ‘traditional’ models fit equally well. Therefore, we
recommend testing these models in the analysis of data with similar properties
in the future, in case they fit better for such data sets.
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TABLE 2. SVA and SVB models fitted to biodosimetry data.

Models Parameters Log likelihood AIC BIC

SVA Poisson-Poisson 6 −3749.36 7511 7557
SVA Poisson-NB 9 −3749.36 7517 7586
SVA NB-Poisson 9 −3741.47 7501 7570
SVA NB-NB 12 −3744.89 7514 7606

SVB Poisson-NB 9 −3749.36 7517 7586
SVB NB-NB 12 −3747.72 7519 7611
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1 Introduction

Over-dispersion phenomenon in probability distributions related to count data
refers to the presence of variability in data higher than that corresponding to the
Poisson distribution. A common over-dispersion source is the existence of an extra
amount of zeros in relation to the number of zeros that a Poisson distribution
may present. That extra amount of zeros may appear when the dataset is divided
in two populations: in the first, the counting event is impossible (so it is called the
non-users group) and all the variable values are structural zeros; in the second
(the potential users group), the event may affect the individuals, so a zero value
may appear but also higher values. In order to analyse that kind of datasets, zero
inflated models propose a mixture of two processes: on the one hand, it considers
that a binary process generates the structural zeros; on the other hand, when a
datum is not an structural zero, a counting process generates it. A logistic model
or a censured counting process may be considered for the binary process, whereas
the counting process is commonly modelled by a Poisson or a negative binomial
distribution, giving way to the Zero Inflated Poisson (ZIP) or the Zero Inflated
Negative Binomial (ZINB) models, respectively.
Although over-dispersion is the most common situation in count data, under-
dispersion, that appears when the variance is below the mean, is also possible.
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That under-dispersion phenomenon can be explained by the existence of a nega-
tive contagion effect in the counting process.
Modelling in an under-dispersion context gets more complex if the dataset presents
structural zeros: in that case, ZIP or ZINB models cannot work adequately, be-
cause they would only be able to reflect equi-dispersion or over-dispersion in
the potential users group, and a model that can manage under-dispersion is
necessary. Moreover, Sellers and Shmueli (2013) have shown that datasets may
contain mixtures of populations, some of them being over-dispersed and others
under-dispersed.
That possibility of the misspecification is more evident when these data are
zero inflated, because considering data from both groups jointly provides over-
dispersion, hiding the fact that some cases in the potential users group, or even
all of them, may be under-dispersed.
Therefore, our goal in this work is to study the capability of a zero inflated model
where the probability distribution for the counting process of the potential users
group is a hyper-Poisson distribution, to model a dataset detecting the presence
of a non-users group and, at the same time, being able to distinguish over- and
under-dispersion in the group of potential users. The model is described in section
2. Section 3 includes an application to real data.

2 The Zero Inflated hyper-Poisson regression model

Let yi being the value of the response variable of the i−th individual of the
sample, a zero inflated model for it may be defined by

Yi = p∗i Y
∗
i ,

where p∗i is a binary realization of a Bernoulli variable with probability pi, which
represents the probability of the i−th individual to be a structural zero, and Y ∗i
is the count variable for non-structural zero individuals of the sample.
The probability mass function (p.m.f.) is then

P [Yi = yi] =

{
pi + (1− pi)P [Y ∗i = 0] if yi = 0

(1− pi)P [Y ∗i = yi] if yi > 0
.

We define the Zero Inflated hyper-Poisson model (from now on, ZIhP) as the
zero inflated model where the distribution of Y ∗i is a hyper-Poisson distribution,
whose p.m.f. is

P [Y ∗i = yi] =
1

1F1 (1; γi;λi)

λyii
(γi)yi

, yi = 0, 1, ...,

being (a)r = a (a+ 1) ... (a+ r − 1), a > 0, r a positive integer, and 1F1 (a; b; c)
the confluent function. γi is a dispersion parameter which determines that the
distribution is over-dispersed if γi > 1, under-dispersed if γi < 1 and if γi = 1 it
matches with the Poisson. λi is interpreted as a location parameter.
The model may include covariates both in pi, and Y ∗i . Let we denote xT

i =
(1, xi1, xi2, ..., xik) the observed covariates that affect Y ∗i and zT

i = (1, zi1, zi2, ..., zil)
those that affect pi. Then, we consider

pi =
1

1 + exp (−zT
i ν)

.
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And we choose the formulation of the hyper-Poisson regression model (Sáez-
Castillo and Conde-Sánchez, 2013) for Y ∗i modelling the mean as

µi = E [Yi] = exp
(
xT
i β
)

and, optionally, from the dispersion parameter as

γi = exp
(
xT
i δ
)
. (1)

Since it is known that

µi = λi − (γi − 1)
1F1 (1; γi;λi)− 1

1F1 (1; γi;λi)
, (2)

it is possible to obtain the location parameter λi for each case solving (2) once
we have determined µi and γi. As we have mentioned, the model determines an
under-dispersed, over-dispersed or equi-dispersed distribution for Y ∗i depending
on γi value.
So it is possible to detect different variance-means ratios within the cases, de-
pending on covariates and once the effect of structural zeros has been isolated.
We estimate the model coefficients by maximizing the log-likelihood function (see
Sáez-Castillo and Conde-Sánchez, 2016 for details).

3 Application to real data

We illustrate the use of the ZIhP with real data by considering a dataset from the
Australian Health Survey 1977-1978 used by Staub and Winkelmann (2013). The
dependent variable is the number of consultations with a doctor or specialist in
the 2-week period before the interview. Regressors include demographics (sex and
age), income, various measures of health status (number of reduced activity days,
general health questionnaire score, recent illness, chronic condition 1 and chronic
condition 2) and four types of health insurance coverage (Levyplus, Freepor and
Freerepat, with Levy the omitted category).
Table 1 shows the obtained results for the ZIhP model. Only significant covariates
for γ have been considered. The ZINB model has an AIC of 6269.187 whereas
de ZIhP has an AIC of 6228.763, so the proposed model produces a better fit.
In addition, it can be checked by replacing the estimates in (1) that on most
occasions γi < 1, thus under-dispersion is present. Therefore, in this dataset ZINB
model cannot work adequately because it only is able to reflect over-dispersion.
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TABLE 1. Coefficient estimates and standard errors (in parentheses) of ZIhP
fitted model. In bold statistical significance at 5% level.

Variable ν̂ β̂ δ̂

Sex -0.4711 (0.1742) -0.0392 (0.0877)
Age ×10−2 0.6591 (3.4422) 1.1256 (1.6921)
Age2 × 10−4 -1.7767 (3.7997) -0.8670 (1.8218)
Income -0.0636 (0.2699) -0.0868 (0.1434)
Levyplus -0.3309 (0.2092) 0.0646 (0.1203)
Freepoor 0.4178 (0.5773) -0.1852 (0.3211)
Freerepat -0.8705 (0.2937) -0.0321 (0.1451)
Illness -0.5696 (0.1108) -0.0327 (0.0361) 0.3128 (0.1449)
Activity days -1.3631 (0.2588) 0.0760 (0.0119) 0.8672 (0.2579)
G. health q. score -0.1070 (0.0388) 0.0220 (0.0143)
Chronic cond. 1 -0.1832 (0.1970) -0.0675 (0.1097)
Chronic cond. 2 -0.3433 (0.2859) 0.0267 (0.1271)
Constant 2.6041 (0.6068) -0.6969 (0.3215) -1.5493 (0.5042)
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Abstract: Unemployment belongs to the most serious economic and social prob-
lems of developed countries. The unemployment duration in the Czech Republic
in 2008, 2010 and 2014 is analysed with the use of the methods of the survival
analysis as an time-to-event random variable. A finite mixture of lognormal dis-
tributions is used to describe an overall distribution as well as the distribution
of components given by education of the unemployed. Data from the Labour
Force Sample Survey that is performed by the Czech Statistical Office are used
for the analysis. In the questionnaire that is used for the survey the unemploy-
ment duration is given only in intervals. Data are treated as right censored and
interval censored, exact values of the unemployment duration are not included in
the analysed dataset. The strong positive effect of education on the duration of
unemployment is quantified for all analysed years. An increase in unemployment
duration is described for the period of the 2008-2012 economic crisis (2010) with
respect to the periods before (2008) and after (2014) the crisis.
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1 Finite mixture model

Data from the Labour Force Sample Survey (LFSS) that is performed quarterly
by the Czech Statistical Office (LFSS, 2015) are used in order to model the dis-
tribution of the unemployment duration. The households (statistical units) in the
LFSS survey form a rotating panel, one fifth of the sample rotates quarterly and
none of the households is followed for more than one year. During the interviews
of the survey no exact durations of unemployment are recorded and respondents
give the duration of unemployment in given intervals (in months) 0-1, 1-3, 3-6,
6-2, 12-18, 18-24, 24-48 and over 48 months. It means that all data are censored
(incomplete), for an unemployed who found a job during the year in the survey
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(four consequtive quarters, five visits) the observed duration is interval censored;
for those who did not find a new job we know that the duration of unemployment
is longer than the given interval and the datum is treated as right censored in the
left limit of the recorded interval. For the analysis the durations shorter than two
years were used with 4 levels for education of the unemployed (basic (ISCED-97
0, 1), secondary without baccalaureate (ISCED-97 2), secondary (ISCED-97 3,
4), tertiary (ISCED-97 5, 6)). There were found 2,893 (new job (interval cen-
sored data) 1,127) eligible unemployed people in 2008, 4,753 (1,501) in 2010 and
2,844 (1,418) in 2014. For T an unemployment duration in the Czech Republic,
separate models were constructed for three analysed years. A mixture of four
lognormal distributions is given (for a selected year, no subscript for a year is
used, but the parameters are year-specific) by the density

f(t;ψ) =

4∑
j=1

πjf(t;µj , σj),

where for j = 1, ..., 4 f(t;µj , σj) are component lognormal densities (from the
basic education (j = 1) to tertiary (j = 4)) and π is a vector of weights of the
components in the mixture. The vector of unknown parameters in the model ψ
consists of the parameters (8 parameters) of component distributions µj , σj , j =
1, ..., 4 and 3 free parameters πj . The maximum likelihood estimates of parameters
(Lawless (2003)) were evaluated in the program R, the package Survival was used,
Therneau (2015).
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FIGURE 1. Fitted distributions for 2008.
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FIGURE 2. Fitted distributions for 2010.
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FIGURE 3. Fitted distributions for 2014.

2 Results

The mean age of the unemployed was 36.6-37.5 years (standard deviations 12.9-
13.1), with no differences in age between men and women. The difference in age
between the unemployed with aned without a new job was about 2 years in all the
analysed periods. For all analysed years the highest values of estimated parame-
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ters µ, σ were found for basic education; parameters µ decrease with increasing
education, variance parameters σ are comparable through the components (the
use of one parameter for the variance decreases number of estimated parameters
and improves the numerical performance, but based on the results of simulations
the component specific variances are used). In 2010 both estimated parameters
are greater then in 2008 or 2014, reflecting the length of unemployment during
the economic crisis. Estimated component densities are given in the Figure 1-
Figure 3 together with the density of the estimated mixture. The densities for
tertiary and basic education are separated, densities for secondary and complete
secondary education are similar and the density of the mixture coincides with
them. One lognormal distribution was fitted into data and similar characteris-
tics were obtained for the distribution of the duration of unemployment, however
according to AIC criterion the mixture model provides better fit to data.
In order to compare components in years the characteristics of the level and the
variability were evaluated from the estimated distributions (and quantile charac-
teristics were prefered to the moment characteristics due to the heavy tails and
positive skewness of the analysed distributions). The strong positive impact of
education on the unemployment duration is clear from the figures as well as from
the characteristics of the level. Difference in estimated median unemployment
duration between basic and tertiary education is 7.7 (2008), 11.6 (2010) and 9.1
months (2014) with the population level 11.4, 14.3 and 11.3 months. For the
quartile deviation these differences are 5.8, 11.0 and 6.4 months, for the whole
population the estimated quartile deviations are 7.3, 9.5 and 6.6 months.
The hazard functions were estimated for all the models. All estimated hazard
functions have one maximum, for the mixture at 9-10 months with maximums
for the tertiary education at 7-8 months and 11-13 months for basic education.
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Abstract: Multi-state models can be successfully used to model complicated
event history data, for example, describing stages in the disease progression of a
patient. In these models one important goal is the estimation of the transition
probabilities since they allow for long term prediction of the process. There have
been several recent contributions for the estimation of the transition probabilities.
Recently, de Uña-Álvarez and Meira-Machado (2015) proposed new estimators
for these quantities, and their superiority with respect to the competing estima-
tors has been proved in situations in which the Markov condition is violated.
In this paper, we propose a modification of the estimator proposed by de Uña-
Álvarez and Meira-Machado based on presmoothing. Simulations show that the
presmoothed estimators may be much more efficient than the completely non-
parametric estimator.

Keywords: Kaplan-Meier; Multi-state model; Nonparametric estimation; Tran-
sition probabilities.

1 Introduction

In many medical studies individuals can experience several events across a follow-
up study. Analysis of such studies can be successfully performed using a multi-
state model (Meira-Machado et al., 2009). This paper introduces and studies a
feasible estimation method for the transition probabilities in a progressive multi-
state model.
Fully non-Markov estimators for the transition probabilities were introduced for
the first time in Meira-Machado et al. (2006). Recently, this problem has been
reviewed, and new sets of estimators have been proposed (de Uña-Álvarez and
Meira-Machado, 2015). This method proceeds by considering specific subsets of
individuals (namely, those observed to be in a given state at a pre-specified time

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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point) for which the ordinary Kaplan-Meier survival function leads to a consistent
estimator of the target. Superiority with respect to the competing estimators has
been proved.
A multi-state model is a stochastic process (X(t), t ∈ T ) with a finite state space,
where X(t) represents the state occupied by the process at time t. For simplicity,
in this paper we assume the progressive illness-death model and we assume that
all the subjects are in State 1 at time t = 0. The illness-death model describes
the dynamics of healthy subjects (State 1) who may move to an intermediate
“diseased” state (State 2) before entering into a terminal absorbing state (State
3). Many longitudinal medical data with multiple endpoints can be reduced to
this structure.
The illness-death model is characterized by the joint distribution of (Z, T ), where
Z is the sojourn time in the initial state 1 and T is the total survival time.
Both Z and T are observed subject to a random univariate censoring C assumed
to be independent of (Z, T ). Due to censoring, rather than (Z, T ) we observe

(Z̃, T̃ ,∆1,∆2) where Z̃ = min(Z,C), ∆1 = I(Z ≤ C), T̃ = min(T,C), ∆2 =
I(T ≤ C), where I(·) is the indicator function. The target is each of the five
transition probabilities pij(s, t) = P (X(t) = j | X(s) = i), where 1 ≤ i ≤ j ≤ 3
and s < t are two pre-specified time points.

2 Estimators

The transition probabilities are functions involving expectations of particular
transformations of the pair (Z, T ). In practice, we only need to estimate three
transition probabilities since the others can be expressed from these ones; namely,

p11(s, t) =
E [I(Z > t)]

E [I(Z > s)]
, p13(s, t) =

E [I(s < Z, T ≤ t)]
E [I(Z > s)]

,

p23(s, t) =
E [I(Z ≤ s < T ≤ t)]
E [I(Z ≤ s < T )]

.

Because of space limitation we will focus on the transition probability p13(s, t) =
P (T ≤ t | Z > s). Given the time point s, to estimate this quantity, the analysis
can be restricted to the individuals with an observed first event time greater
than s. This is known as the landmark approach (van Houwelingen et al. 2007).

The corresponding estimator (KMW) is given by p̂13(s, t) = 1 − Ŝ(s)
T (t) where

Ŝ
(s)
T (t) denote the Kaplan-Meier estimator computed from the given sub sample.

Similarly, the transition probability p23(s, t) = P (T ≤ t | Z ≤ s < T ) can be
estimated by considering specific subsets of individuals (namely, those observed to
be in a state 2 at a pre-specified time point s, i.e. those for which Z ≤ s < T ) for
which the ordinary Kaplan-Meier survival function leads to a consistent estimator
(see de Uña-Álvarez and Meira-Machado (2015) for further details).
The standard error of the estimators introduced by de Uña-Álvarez and Meira-
Machado may be large when censoring is heavy, particularly with a small sample
size. Interestingly, the variance of this estimator may be reduced by presmoothing.
This ‘presmoothing’ is obtained by replacing the censoring indicator variables in
the expression of the Kaplan-Meier weights (used by the authors), by a smooth
fit. This preliminary smoothing may be based on a certain parametric family such
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as the logistic, or on a nonparametric estimator of the binary regression curve.
The (semiparametric) Kaplan-Meier Presmoothed Weighted estimator (KMPW)

is given by p̂?13(s, t) = 1−Ŝ(s?)
T (t) where Ŝ

(s?)
T (t) denotes the presmoothed Kaplan-

Meier estimator in the same sub sample.
Note that, unlike the estimator by de Uña-Álvarez and Meira-Machado (2015),
the semiparametric (presmoothed) estimator can attach positive mass to pair of
event times with censored total time. However, both estimators attach a zero
weight to pairs of event times for which the first event time is censored. In the
limit case of no presmoothing, the two estimators are equivalent.

3 Simulation study

In this section we investigate the performance of the proposed estimators through
simulations. The simulated scenario is the same as that described in Amorim et
al. (2011). To compare the performance of the methods we compute the mean
square error (MSE), bias and standard deviation (SD). For completeness we also
included the estimator by Meira-Machado et al. (2006).
Figure 1 depicts the boxplots of the estimated MSE over 1000 simulated datasets.
From this plot it can be seen that with exception of the (LIDA) estimator by
Meira-Machado et al. (2006) the remaining two estimators (KMW and KMPW)
perform well, approaching their targets as the sample size increases. Besides, sim-
ulation results also reveal that the new proposal perform favorably when com-
pared with the competing methods. Our simulation results reveal relative benefits
of presmoothing in the heavily censored scenarios or small sample sizes.
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tuguese Funds through FCT - “Fundação para a Ciência e a Tecnologia”, in
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FIGURE 1. Mean square error for the three estimators.
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Abstract: To analyze the impact of marketing investment on sales in the auto-
mobile market, the competitive context cannot be ignored. Thus market-shares
and shares-of-voice are of interest. This contribution aims to present and com-
pare statistical modeling methods adapted for shares or proportions, which are
characterized by the following constraints: positivity and sum equal to 1. Two
major approaches address this question: market-share models from the econo-
metric marketing literature and compositional data analysis from the statistical
literature. The common point between the two is to use log-ratio transforma-
tions in order to model shares accounting for their constraints. The differences
are mostly coming from the assumptions made on the distribution of the data
itself or on the error terms of the models.

Keywords: Market-share; Compositional data; Automobile.

1 Introduction

This paper aims to present statistical modeling methods adapted for shares or
proportions, which are characterized by the following constraints: they are pos-
itive and sum up to 1. By definition shares are ”compositional data”: a compo-
sition is a vector of parts of some whole which carries relative information. For
a composition of D parts, if D − 1 parts are known the Dth is simply 1 minus
the sum of the D − 1 parts. Thus, a D-composition could be represented with
a (D − 1)-dimensional real Euclidean vector space structure. Because of these
constraints, classical regression models cannot be used directly. The well-known
ceteris paribus is unusable to interpret models based on compositional data be-
cause when one share changes, the others change too.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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Two major branches of the statistical literature take into account the constraints
of this type of data: market-share models coming from the quantitative marketing
applications, and compositional models coming from CODA (Compositional Data
Analysis).

2 Market-share models

Market-share models were developed in the 80’s, mainly by Nakanishi & Cooper
(1988). The aim is to model market-shares of D brands using their marketing
factors (price, advertising) as explanatory variables.
These models are aggregated versions of discrete choice models like the MNL
model (Multinomial Logit model). The concept of ”attractivity” of a brand is
central in this literature, and is comparable to the ”utility” concept in discrete
choice models. The specification of the attractivity of brand j is a multiplicative
expression of the explanatory variables describing brand j. The market-share of
brand j is defined as its relative attractivity compared to competitors, i.e. as its
attractivity divided by the sum of attractivities of all the brands of the market.
This explains why they are often called MCI models (Multiplicative Competitive
Interaction models).
The estimation of MCI models is usually made on the log-linearized shares with
OLS or GLS. But one can prove that under certain assumptions, a maximum
likelihood estimation could be done. This literature is concerned by explaining
shares so the focus is on the case of a dependent compositional variable whereas
we will see that in CODA, the compositional nature of the variable can also be
for the independent variables.

3 Compositional models

Compositional data analysis was developed first in the 80’s by John Aitchison
(1986). Since the 90’s, a group of researchers from the University of Girona (V.
Pawlowsky-Glahn, J.J. Egozcue, C. Barcelo, J.A. Martin Fernandez) is particu-
larly active in the domain and has developed a large mathematical framework
for this literature.
First applications were made on geological data, with the objective to analyze the
composition of a rock sample in terms of the relative presence of different chemical
elements. More generally, CODA aims to analyze relative information between
the components (parts) of a composition where the total of the components is
not relevant or is not of interest.
A composition of D parts lies in the simplex SD. The suited geometry for com-
positions is the Aitchison geometry (or simplicial geometry), not the Euclidean
geometry. Aitchison geometry defines the perturbation operation ⊕, the powering
operation � and the inner product 〈., .〉a inside the simplex. Compositions can
be transformed in coordinates by a log-ratio transformation in order to be repre-
sented in a RD−1 Euclidean space. Then, classical methods suited for data in the
Euclidean space can be used on coordinates. Three main transformations are de-
veloped: the ALR (additive log-ratio), the CLR (centered log-ratio) and the ILR
(isometric log-ratio) transformations, each of them having specific advantages.
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CODA regroups different tools for analyzing compositions: graphical tools (ternary
diagrams, biplot of coordinates), analytic tools (compositional PCA) and com-
positional regression models. Compositional regression models are of different
types depending on whether the response variable and/or the explanatory vari-
ables are compositional. The estimation is made on coordinates (after log-ratio
transformation), usually with the OLS method.

4 Application

These methods are applied to an automobile market data set containing for each
vehicle, by month, the sales volume, the catalog price, the media investments by
canal (TV, Press, Radio, Outdoor, Digital, Cinema), and attributes of the vehicle
(brand, segment, age on the market). The main objective is to understand the
impact of media investments on market-shares in terms of sales volume (the
response variable is compositional) controlling for other factors (attributes and
price).
Moreover, two other compositional models are tested. The 1st model uses a com-
position as explanatory variable (the composition of media expenses by canal
for each vehicle) while the response variable (the sales for each vehicle) and the
others explanatory variables (price and attributes for each vehicle) are in volume.
The 2nd model considers compositions in the response variable side (the market-
shares of all vehicles) and in the explanatory variable side (the composition of
relative media expenses of all vehicles, so-called shares-of-voice in marketing).
In each model specification the interest is on the marginal impact of each canal
of media and on the interactions between the different canals. The final objective
is to do some recommendations for the car manufacturer on the total amount of
media to invest and on its distribution among the canals.

5 Comparison and results

A comparison of these two model families is done in terms of properties of re-
sults, assumptions on the distribution of error terms, and interpretation of fitted
coefficients. It turns out that the two methods have benefits and drawbacks, and
can benefit to each other.
On the one hand, we prove that the IIA (Independence from Irrelevant Alter-
natives) property of discrete choice models (and then of market-share models)
is equivalent to the sub-compositional coherence of CODA models. Whereas the
IIA property has been often criticized (because it turns out to be often unreal-
istic in practice) leading to the development of more flexible models in discrete
choice models (nested logit, GEV) with their counterpart in market-share models,
the sub-compositional coherence is apparently never questionned in the CODA
literature.
On the other hand, CODA proposes the ILR transformation which is a projection
of compositional data using an orthonormal basis in the simplex. ILR has good
mathematical properties and permits to use a large number of statistical tools,
contrary to ALR and CLR. However, one can show that the transformations used
in market-share models correspond to ALR or CLR, but ILR is never used.
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Moreover, assumptions on covariance structure between the components with
MNL specification are less flexible (negative covariance is imposed) than in the
CODA framework (positive covariance is allowed between certain components).
Finally, concerning the results of the modeling, the two methods will lead to
different interpretations and complementary information depending on the log-
ratio transformation used.
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Abstract: An individual has been subjected to some exposure and has developed
some outcome. Using data on similar individuals, we wish to evaluate, for this
case, the probability that the outcome was in fact caused by the exposure. Even
with the best possible experimental data on exposure and outcome, we typically
can not identify this “ probability of causation” exactly, but we can provide infor-
mation in the form of bounds for it. Here, using the potential outcome framework,
we propose new bounds for the case that a third variable mediates partially or
completely the effect of the exposure on the outcome.

Keywords: Probability Of Causation; Mediation Analysis; Potential Outcomes.

1 Introduction

A typical causal question can be categorized into two main classes: about the
causes of observed effects, or about the effects of applied causes. Let us consider
the following example: an individual, called Ann, might be subjected to some
exposure X, and might develop some outcome Y . We will denote by XA ∈ {0, 1}
the value of Ann’s exposure (coded as 1 if she takes the drug) and by YA ∈
{0, 1} the value of Ann’s outcome (coded as 1 if she dies). Questions on the
effects of causes, named “EoC”, are widely known in literature as for example
by Randomized clinical trials. In the EoC framework we would be interested in
asking: “What would happen to Ann if she were (were not) to take the drug?”. On
the other hand, questions on the causes of observed effects, “CoE”, are common
in a Court of Law, when we want to assess legal responsibility. For example, let
us suppose that Ann has developed the outcome after being exposed, a typical
question will be “Knowing that Ann did take the drug and passed away, how likely

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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is it that she would not have died if she had not taken the drug?”. In this paper we
will discuss causality from the CoE perspective, invoking the potential outcome
framework. Definition of CoE causal effects invokes the Probability of Causation
Pearl (1999) and Dawid (2011) PCA = PA(YA(0) = 0 | XA = 1, YA(1) = 1)
where PA denotes the probability distribution over attributes of Ann and Y (x)
is the hypothetical value of Y that would arise if X was set to x. Note that
this expression involves the bivariate distribution of the pair Y = (Y (0), Y (1))
of potential outcomes. Whenever the probability of causation exceeds 50%, in a
civil court, this is considered as preponderance of evidence because causation is
“ more probable than not”.

2 Starting Point: Simple Analysis

In this section we discuss the simple situation in which we have information, from
a hypothetical randomized experimental study (such that Xi ⊥⊥ Yi for a subject
i in the experimental population) that tested the same drug taken by Ann such
that P1 = P(Y = 1 | X ← 1) = 0.30 and P0 = P(Y = 1 | X ← 0) = 0.12.
This information alone is not sufficient to infer causality in Ann’s case. We need
to further assume that the fact of Ann’s exposure, XA, is independent of her
potential responses YA, that is XA ⊥⊥ YA, and that Ann is exchangeable with the
individuals in the experiment. On account of this and exchangeability, the PCA
reduces to PCA = P(Y (0) = 0 | Y (1) = 1). However, we can never observe the
joint event (Y (0) = 0;Y (1) = 1), since at least one event must be counterfactual.
But even without making any assumptions about this dependence, we can derive
the following inequalities, Dawid et al. (2015):

1− 1

RR
≤ PCA ≤

P(Y = 0 | X ← 0)

P(Y = 1 | X ← 1)
(1)

where RR = P(Y = 1 | X ← 1)/P(Y = 1 | X ← 0) is the experimen-
tal risk ratio between exposed and unexposed. Since, in the experimental
population, the exposed are 2.5 times as likely to die as the unexposed
(RR = 30/12 = 2.5), we have enough confidence to infer causality in Ann’s
case, given that 0.60 ≤ PCA ≤ 1.

3 Bounds in Mediation Analysis

In this Section we present a novel analysis to bound the Probability of
Causation for a case where a third variable, M , is involved in the causal
pathway between the exposure X and the outcome Y and plays the role
of mediator. We shall be interested in the case that M is observed in the
experimental data but is not observed for Ann, and see how this additional
experimental evidence can be used to refine the bounds on PCA.

First we consider the case of complete mediation, Dawid et al. (2016). Us-
ing counterfactual notation, we denote by M(x) the potential value of M
for X ← x, and by Y ∗(m) the potential value of Y for M ← m. Then
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Y (x) := Y ∗{M(x)}. Assuming no confounding for the exposure-mediator
and mediator-outcome relationship, the causal pathway will be blocked af-
ter adjustment for M (Markov property Y ⊥⊥ X|M). The assumed mutual
independence implies the following upper bounds for the probability of cau-
sation in the case of complete mediation: PCA ≤ Num/P(Y = 1 | X ← 1),
while the lower bound remains unchanged from that of the simple analysis
of X on Y in Eq. (1). For the upper bound’s numerator, Num, one has to
consider various scenarios according to different choices of the estimable
marginal probabilities in Table 1.

TABLE 1. Upper Bound’s Numerator for PCA in Complete Mediation Anlaysis

a ≤ b a > b

c ≤ d a · c+ (1− d)(1− b) b · c+ (1− d)(1− a)

c > d a · d+ (1− c)(1− b) b · d+ (1− a)(1− c)

In Table 1, a = P (M(0) = 0), b = P (M(1) = 1), c = P (Y ∗(0) = 0) and
d = P (Y ∗(1) = 1). Given the no-confounding assumptions, these are all
estimable probabilities.

For the case of partial mediation, we introduce: Y ∗(x,m), the potential
value of the outcome after setting both exposure and mediator, so that now
Y (x) = Y ∗(x,M(x)). Let us consider the following assumptions (named
(A)): Y ∗(x,m) ⊥⊥ (M(0),M(1))|X; Y ∗(x,m) ⊥⊥ X that is no X − Y
confounding and M(x) ⊥⊥ X that is no X −M confounding. Note that as-
sumption Y ∗(x,m) ⊥⊥ (M(0),M(1))|X implies both Y ∗(x,m) ⊥⊥ M(0)|X
and Y ∗(x,m) ⊥⊥ M(1)|X, that is no M − Y confounding. If Ann is ex-
changeable with the individuals in the experiment

PCA = P(Y (0) = 0, Y (1) = 1 | X = 1)/P(Y (1) = 1 | X = 1).

The numerator involves a bivariate distribution of counterfactual outcomes.
Using assumptions (A) and and the inequality P (A∩B) ≤ min{P (A), P (B)},
we can obtain an upper bound for PCA considering these 64 combinations

P(Y (0) = 0, Y (1) = 1|X = 1) ≤

min{P(Y
∗
(0, 0) = 0),P(Y

∗
(1, 0) = 1)} ·min{P(M(0) = 0),P(M(1) = 0)} (2)

+min{P(Y
∗
(0, 0) = 0),P(Y

∗
(1, 1) = 1)} ·min{P(M(0) = 0),P(M(1) = 1)} (3)

+min{P(Y
∗
(0, 1) = 0),P(Y

∗
(1, 0) = 1)} ·min{P(M(0) = 1),P(M(1) = 0)} (4)

+min{P(Y
∗
(0, 1) = 0),P(Y

∗
(1, 1) = 1)} ·min{P(M(0) = 1),P(M(1) = 1)} (5)

It can be proved that the lower bound does not change. Assumptions A
will be enough to estimate the lower and the upper bounds from the data.
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4 Comparisons and conclusions

The numerator of the upper bound of PCA in the simple analysis framework
(1), which ignores the mediator, may be written as

min{P(Y
∗
(0, 0) = 0)P(M(0) = 0) + P(Y

∗
(0, 1) = 0)P(M(0) = 1),P(Y

∗
(1, 0) = 1)P(M(1) = 0)

+ P(Y
∗
(1, 1) = 1)P(M(1) = 1)} = min{α+ β, γ + δ}. (6)

We can see that both (2) and (3) are smaller than or equal to α, while
both (4) and (5) are smaller than or equal to β. Thus, the upper bound not
accounting for the mediator, could be larger or smaller than that obtained
considering the partial mediation mechanism. On the other hand, it can be
proved that the bounds found for the case of complete mediation are never
larger than for the simple analysis of X on Y .

In conclusion, the important implications of PCA in real cases encourage
the researcher to focus on studying methods capable of producing more
precise bounds. Here we have proposed a novel analysis to bound the PCA
when a mediator lies on a pathway between exposure and outcome.
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Abstract: Health related quality of life (HRQoL) has become an increasingly
important indicator of health status in clinical trials and epidemiological research.
It has been stated that beta-binomial distribution is a good option to fit this type
of outcomes. The goal of HRQoL analysis use to be the measurement of the effect
of patients’ and disease’s characteristics have on HRQoL of patients. This work is
motivated by the application in a real data with HRQoL observations of chronic
obstructive pulmonary disease (COPD) patients in which two regression models
based on the beta-binomial distribution yields contradictory results: i) Beta-
binomial distribution with a logistic link and ii) hierarchical likelihood approach
(HGLM). None of the existing literature in the analysis of HRQoL survey data
has performed a comparison of both approaches in terms of adequacy. In this
work we present a detailed comparison by a simulation study and propose the
best approach in terms of parameter significance and effect to deal with HRQoL
outcomes.

Keywords: Beta-binomial regression; health related quality of life; chronic ob-
structive pulmonary disease; Hierarchical GLM.

1 Introduction

Health-related quality of life (HRQoL) has become an important measure of
health status as it provides patients information in a standardized, compa-
rable and objective way. The relationships between HRQoL and risk factors
can help to evaluate medical care results, especially in chronic diseases. One
of the most widely used generic instruments for measuring HRQoL is the
Short Form-36 (SF-36) Health Survey.
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It has been proved in the literature that the beta-binomial distribution is
an adequate candidate to fit SF-36 survey data and a beta-binomial regres-
sion model has been proposed to perform HRQoL analysis. There are two
different approaches in the literature in order to implement a regression
model based on the beta-binomial distribution: (i) beta-binomial distribu-
tion with a logistic link (Forcina and Franconi, 1988) and (ii) Hierarchical
Generalized Linear Model (HGLM) by Lee and Nelder (1996). However,
none comparison between these two regression approaches has been ad-
dressed from a practical point of view.
The application of the two regression approaches in a real data containing
HRQoL measurements of chronic obstructive pulmonary disease (COPD)
patients yields to contradictory results in terms of covariate effect. Con-
sequently, we have performed a comparison study concluding the best re-
gression approach in terms of covariate effect significance and interpretation
when dealing with HRQoL data.

2 Methodologies

The beta-binomial distribution consists of a finite sum of Bernoulli depen-
dent variables whose probability parameter is random and follows a beta
distribution with parameters α1 and α2. In general, if θ is the probability
variable, y follows a beta-binomial distribution if

y|θ ∼ Bin(m, θ) and θ ∼ Beta(α1, α2).

The marginal likelihood of this distribution can be explicitly calculated.

2.1 Logistic regression based on a beta-binomial distribution

Let y1, . . . , yn be a set of independent beta-binomial variables. Arostegui et
al. (2007) proposed a reparameterization as α1i = pi/φ and α2i = (1− pi)/φ.
Consequently, we have that

E[yi] = npi and Var[yi] = npi(1− pi)
[
1 + (m− 1)

φ

1 + φ

]
,

which allows the interpretation of pi as the probability parameter. Forcina
and Franconi (1988) proposed to link pi through a logit function connecting
it with some covariates. They proposed an iterative estimation method
based on the maximum likelihood approach. We call this model BBlogit.

2.2 HGLM

Lee and Nelder (1996) introduced the concept of hierarchical generalized
linear models (HGLMs), as a generalization of generalized linear mixed
models (GLMMs) to the inclusion of non-gaussian random effects. Conse-
quently, we can formulate the following model:
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yi|u ∼ Bin(m, pi) and uj ∼ Beta(1/(2φ), 1/(2φ))

where the linear predictor is

logit(pi) = x′iβ + z′iv

and v = logit(u) are the random effects. The estimation in this model is
done via h-likelihood and some adjusted profile likelihoods.

3 Application to real data: COPD study

COPD is a very common chronic disease, which is expected to increase in
prevalence over the next years. Both regression approaches were applied to
COPD data. Depending on the HRQoL dimensions results were completely
different. In role emotional dimension the results were:

TABLE 1. Effect of explanatory variables in role emotional dimension measured
by both beta-binomial regression approaches.

Role emotional hglm BBlogit

β̂ SD(β̂) p-value β̂ SD(β̂) p-value

Anxiety
Yes -6.145 2.062 0.003 -1.649 0.226 <0.001

Dyspnea
Mild -2.600 5.229 0.619∗ -0.614 0.418 0.142∗

Modere -3.981 5.080 0.434∗ -1.379 0.413 <0.001
Severe -5.603 5.496 0.309∗ -2.048 0.467 <0.001

log(φ) 2.735 0.095 <0.001 0.668 0.150 <0.001

Different conclusions were obtained depending on the applied approach,
which evidences de need of a simulation study to compare them.

4 Simulation study

We have performed 500 simulations of 100 observations of a beta-binomial
dependent variable, which probability parameter was calculated by a simu-
lated covariate and by fixing the regression parameters β0 and β1. The value
of φ divides the simulation in different scenarios: bell-shaped (φ < 0.5),
flat-shaped (φ = 0.5) and U-shaped (φ > 0.5). Table 2 shows the results in
U-shaped scenario (φ = 2), the mean and standard deviation of the regres-
sion coefficients, the expected mean squared (EMS) and the percentage the
covariate effect is statistically significant (PCSS) are shown.
Results show that BBLogit is the best performance not only in terms of
regression parameters estimation and EMS, but also measuring the sta-
tistical significance of the covariate. We should emphasize that the hglm
model only considers the covariate statistically significant in 22.6%.
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TABLE 2. Comparison results from a simulation of 500 replicates with φ = 2
and 100 observed responses, m parameter was fixed at m = 20.

True value β0 = 1 β1 = −0.3

Method Mean(SD) EMS Mean(SD) EMS PCSS

hglm 3.192 11.630 -0.949 0.874 22.6%
(2.613) (0.673)

BBlogit 0.789 0.141 -0.248 0.010 82.0%
(0.311) (0.086)

5 Discussion

We have illustrated that the use of two approaches for beta-binomial re-
gression analysis may lead to different interpretation of the effect of the
covariates. HGLM approach considers the expectation of the random com-
ponents u equal to 1/2, which, as the dispersion parameter increases, will
not be maintained by the logit transformation, reaching non zero mean
random effects and creating bias in the estimation. Little variations create
great differences in the mean of the logit transformation, which increases
the variance, and consequently, significance tests fail.
Hence, if the HRQoL analysis interest lies in the interpretation of the re-
gression coefficients, we suggest the use of the BBlogit methodology.
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Abstract: In this work we consider a new family of distributions called the
Birnbaum-Saunders power distribution that presents a bimodal shape for certain
values of parameters. We study its probability density function and present an
application regarding to the waiting time between eruptions in a geyser in the
USA comparing some of the new distributions.
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1 Introduction

Let Z follow any distribution on the real line, denoted by Z ∼ D(θ), with
parameter vector θ, and let

Y = ψ

Z
2

+

√(
Z

2

)2

+ 1

ξ , (1)

where Y > 0, then the distribution of Y is named here as the Birnbaum-
Saunders power (BSP) distribution, where ψ > 0 is a scale parameter
and ξ > 0 is a skewness parameter. For simplicity we will assume, from
now on, that Z follows a distribution with up to four parameters, i.e.,
θ = (µ, σ, ν, τ)>, where −∞ < µ < ∞ is the location parameter, σ > 0 is
the scale parameter and ν and τ are usually parameters related to the tails
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of the distribution of Z. However, after the transformation is performed, µ
and σ are called non-centrality and shape parameters respectively. Hence,
the resulting BSP distribution for Y has up to six parameters and will be de-
noted as Y ∼ BSP (ψ, ξ, µ, σ, ν, τ). Note that, if Z ∼ N(0, σ2) and ξ = 2 we
have the standard Birnbaum-Saunders distribution (Birnbaum and Saun-
ders, 1969). Moreover, if ξ = 2 and Z follows any symmetric distribution
with location parameter µ = 0 we have the generalised Birnbaum-Saunders
distribution (Dı́az-Garćıa and Leiva, 2005). Finally, the BSP probability
density function can be written as

fY (y|ψ, ξ; θ) = fZ(z|θ)
∣∣∣∣∣dzdy

∣∣∣∣∣, y > 0,

where θ corresponds to the parameters inherited from the baseline distri-
bution and

dz

dy
=

1

yξ

[(
y

ψ

) 1
ξ

+

(
y

ψ

)− 1
ξ

]
.

The BSP distribution is potentially a very flexible distribution for Y > 0,
depending on the flexibility of the distribution of Z, and can be unimodal or
bimodal. When ξ → 0 and σ is large, BSP distributions present bimodality.

2 Special cases of the BSP distribution

As explained in Section 1, Z can follow any distribution on the real line.
In this work, we used four different baseline distributions for Z creating
four different distributions: i) Birnbaum-Saunders power normal (BSPNO);
ii) Birnbaum-Saunders power generalised t (BSPGT); and iii) Birnbaum-
Saunders power Johnson Su (BSPJSU); and iv) Birnbaum-Saunders power
sinh-arcsinh (BSPSHASHo) distributions. See Stasinopoulos and Rigby
(2007) for details of these baseline distributions.

3 Application

The data refers to the waiting time between eruptions for the Old Faithful
geyser in Yellowstone National Park, Wyoming, USA and it is available on
R software. Table 1 displays the MLEs of the BSPNO, BSPGT, BSPJSU
and BSPSHASHo parameters and their corresponding AIC value.
We can see that the BSPSHASHo distribution outperformed all the other
distributions, since it produced the smallest value of AIC (2075.49). Plots
of the fitted distributions are displayed in Figure 1.
Figure 2 displays the (normalised quantile) residuals from the fitted BSP-
SHASHo distribution. The true residuals have a standard normal distribu-
tion. Panel (a) is a plot of residuals against the case number (index), panels
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TABLE 1. MLE of model parameters for the waiting time between eruptions.

Model ψ̂ ξ̂ µ̂ σ̂ ν̂ τ̂ AIC

BSPSHASHo 66.69 0.09 5.62 3.74 -0.19 0.44 2075.49
BSPJSU 65.30 0.09 3.25 25.79 -0.19 0.88 2078.79
BSPGT 64.14 0.09 6.00 10.41 114.21 0.96 2081.08
BSPNO 62.55 0.13 3.43 6.72 – – 2087.99

FIGURE 1. Comparison of the fitted distributions to the waiting time between
eruptions.

(b) and (c) display a kernel density estimate and a normal QQ plot for the
residuals, respectively, and panel (d) shows the worm plot (van Buuren and
Fredriks, 2001) of the residuals. The residuals adequately follow a normal
distribution and appear random. Moreover there are no problems in the
worm plot.

4 Conclusion

We presented a new flexible bimodal family of distributions, called the BSP
distribution and show its flexibility through a real data set application
related to the waiting time between eruptions for the Old Faithful geyser
in the USA.

Acknowledgments: The first author gratefully acknowledge grant from
CAPES (Brazil) under the process number 99999.009857/2014-01.
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(a) (b)

(c) (d)

FIGURE 2. Residual plots for the fitted BSPSHASHo distribution.
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Abstract: In this paper we discuss a model for pseudo-panel data when some
but not all of the individuals stay in the sample for more than one time-period
and, thus, we propose to model the individuals’ time dependency by using a
linear mixed effects model with the use of R programming. Data correspond to
the Basque labor market for the period 2005-2012, which includes an economical
crisis or recession period. Results suggest that the effect of the economical crisis
on employment rates is not homogeneous or similar for males and females, as
well as for the individuals’ different educational levels.
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1 Introduction

When we have observations on a set of individuals along different periods of
time, we say that we have a “panel of data”. However, we may have obser-
vations on sets of individuals that change from one period to another, which
do not constitute a panel of data. An example of this are the data obtained
at the Family Expenditure Surveys which are held by many countries.
The main difference in our approach with respect to previous research
is that we do not consider the case of independent samples, but rather
introduce time dependence between them. Thus, while using pseudo-panels,
the work presented in this paper follows a different approach. We model
this correlation structure time dependence by using a linear mixed effects
model methodological approach, as is usually done in longitudinal or panel
data analysis. Linear mixed effects models are considered as one of the
more robust methods in Statistics, and have become a really appealing
methodology for the analysis of panel data.
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2 Labor market data

The data we use come from a large data base (i.e., the PRA) obtained from
EUSTAT, The Basque Institute of Statistics, (1986). The database includes
40 quarterly periods (i.e., ten years), going from the first quarter in the
year 2005 (i.e., 2005-I) to the las quarter in the year 2012 (i.e., 2012-IV).
One of the most interesting characteristics about this database is that it is
based on a continuous probabilistic sample; that is, it includes a panel of
households that is continuously changing or, more specifically, continuously
being updated. The PRA current sample has an approximate sample size
of about 5000 households per quarter (with an approximate total of about
13500 individuals), and a so-called rotation or household update of one
eighth from one to the next quarter. That is, the same household remains
in the sample for eight quarterly periods (i.e., two years) and, then, it is
replaced or is no longer in the sample (EUSTAT, 1986).
The variables selected for the analysis are: employment rate, which will be
the response variable, and gender, educational level and age, which will be
used as explanatory variables.

3 Methodological issues

3.1 Construction of the data cohorts

As we have already mentioned, and given that individuals in the data under
study do not remain in the sample for the whole period, the first step in the
analysis consists on the specific proposal to build the so-called “representa-
tive individuals” or “standard individuals” (i.e., individual’s cohorts) that
we are able to follow along time for the complete period under study. In
this way, we build the so-called pseudo panel data of individuals (Deaton,
1985). In our specific data set, standard individuals or cohorts were con-
structed as a function of the variables gender, educational level and age. As
for gender, we have males an females; as for educational level, we have three
different categories: primary school, high school and university studies. Fi-
nally, as for age, the data base provides this variable already divided by the
five age intervals listed here: 16-24, 25-34, 35-44, 45-54 and 55-65 years old.
Therefore, we should have a total of 30 different standard individuals or
cohorts for the possible level combinations of gender, educational level and
age. However, there are not enough individuals having only primary school
studies for the first three age intervals, leading, thus, to having at the end
only 24 possible standard individuals or cohorts to be analyzed in the final
data set. In this way, as it is usually done when dealing with pseudo panel
data settings, we have averaged the employment rates for the different in-
dividuals belonging to each of these standard individual categories, so that
we observe the same cohort or standard individual over time. Moreover,
and given that from their own construction, observations corresponding to
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standard individuals or cohorts are not independent over time, this char-
acteristic or behavior needs to be included in any methodological approach
considered for their analysis. Furthermore, as individuals used to compute
the corresponding employment rate averages for the standard individuals
or cohorts remain in the sample for several periods of time, a clear time
dependence is present and should be appropriately modelled.

3.2 The Model

A natural, well accepted and known methodological way of modelling this
correlation structure time dependence is by using a linear mixed effects
model methodological approach, as is usually done in longitudinal or panel
data analysis. These models can be seen as an extension of the classic
regression model for cross sectional data when random effects are included
to take into account the possible existing heteroscedasticity for the different
individuals.
In our model proposal, for the fixed effects in the linear mixed effects mod-
els setting, we consider a global quadratic time trend (i.e., it includes the
terms on t and t2), as well as the corresponding effects for the variables ed-
ucational level, gender and age. For the variable educational level, we have
used three dummy variables, Stud(1), Stud(2) and Stud(3), correspond-
ing to the primary school, high school and university studies educational
levels, respectively. The category university studies will be used as refer-
ence level and, thus, it will not be included in the model. For the variable
gender, we have used two dummy variables, one for males (Mal) and one
for females (Fem). The former will be used as reference level and, thus,
it will not be included in the model. Finally, for the variable age, we have
used five dummy variables, Age(1), . . . , Age(5), corresponding to the age
intervals 16-24, 25-34, 35-44, 45-54 and 55-65 years old, respectively. The
age interval 16-24 will be used as reference level and, thus, it will not be
included in the model. As for the random effects, we propose the use of
an individual-specific quadratic time trend that would allow for individual
differences with respect to the global trend given by the fixed effects global
quadratic time trend. Therefore, the proposed linear mixed effects model
for the response variable given by the employment rate for the standard
individual or cohort i at time j, Oij , will be given by:

Oij =

Fixed Effects︷ ︸︸ ︷
β0 + β1tij + β2t

2
ij +

k=2∑
k=1

δkStud(k)ij + λFemij +

k=5∑
k=2

γkAge(k)ij +

k=5∑
k=2

θk (Femij ∗ Age(k)ij) +

Random Effects︷ ︸︸ ︷
+b0i + b1itij + b2it

2
ij +εij , εij

iid∼ N(0, σ
2
), i = 1, 2, . . . , 24; j = 0, 1, 2, . . . , 7

(b0i, b1i, b2i)
T ∼ N(0, D), D =

 σ2
b0

σb0b1 σb0b2
σb0b1 σ2

b1
σb1b2

σb0b2 σb1b2 σ2
b2

 (1)
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4 Model Estimation

TABLE 1. Estimates and standard deviations for linear mixed effects models pa-
rameters. Restricted maximum log-likelihood function and Akaike’s information
criterion (AIC) values are included.

Parameter Fixed Effects Mixed Effects

REML Log-Lik value 201.353 366.016
AIC -474.267 -690.031
Shapiro-Wilk’s normality p-value 0.0004 0.7036

Fixed effects

Intercept β0 0.307 (0.021) 0.252 (0.047)
Linear Time β1 0.006 (0.008) 0.006 (0.003)
Quadratic Time β2 -0.002 (0.001) -0.002 (0.001)
Primary School δ1 -0.241 (0.016) -0.321 (0.034)
High School δ2 -0.094 (0.011) -0.143 (0.023)
Female λ 0.009 (0.024) 0.051 (0.052)
Age Group 2: 25-34 years γ2 0.555 (0.024) 0.548 (0.052)
Age Group 3: 35-44 years γ3 0.656 (0.024) 0.712 (0.052)
Age Group 4: 45-54 years γ4 0.688 (0.022) 0.719 (0.049)
Age Group 5: 55-65 years γ5 0.415 (0.022) 0.533 (0.049)
Female & Age Group 2 θ2 -0.044 (0.034) -0.023 (0.074)
Female & Age Group 3 θ3 -0.156 (0.034) -0.121 (0.074)
Female & Age Group 4 θ4 -0.227 (0.031) -0.141 (0.068)
Female & Age Group 5 θ5 -0.206 (0.031) -0.151 (0.068)

Random effects

Variance of intercepts σ2
b0

− 0.0097
Variance of time effects σ2

b1
− 0.2078

Variance of time square effects σ2
b2

− 0.0169

Covariance parameters for D matrix

Covariance of intercepts, time σb0,b1 − -0.0389
Covariance of intercepts, time square σb0,b2 − -0.0071
Covariance of time, time square σb1,b2 − 0.0393

Variance parameter for the error term

Residual variance σ2 0.0046 0.0003

Approximate standard deviations for the fixed-effects estimates are included in
parentheses.
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4.1 Alternative specifications

In the modelling proposal, we have considered two alternative model spec-
ifications: a fixed effects model, where σ2

b0
= σ2

b1
= σ2

b2
= σb0b1 = σb0b2 =

σb1b2 = 0; and the more general mixed effects model given by (1). Both
model proposals were estimated with restricted maximum likelihood esti-
mation methods (REML) with the use of the function lme (Pinheiro et al.,
2014) implemented in the R statistical software program (R Core Team,
2014). Table 1 includes a summary of the result obtained when fitting both
model proposals, including estimates, standard deviations and goodness-of-
fit measures, such as the restricted maximum log-likelihood function and
the Akaike’s information criterion values. In addition, the Shapiro-Wilk’s
normality test for models’ appropriateness was also conducted and their
p-values are also reported.
Model selection between the fixed and random effects models we have fitted
was based on the likelihood ratio test (LRT) and its restricted log-likelihood
function value. The corresponding REML-based LRT value equals 329.32
(p-value < 0.0001), which clearly rejects the fixed effects model at the usual
α = 0.05 significance level. We have also considered several intermediate
alternative models to the more general random effects model in (1). How-
ever, the corresponding REML-based LRT concluded that the the afore-
mentioned proposed linear mixed effects model is the best fitting model.
Among those intermediate models, we have estimated a model with diag-
onal D matrix i.e., (σb0b1 = σb0b2 = σb1b2 = 0), and compared it with the
general model in (1). The corresponding REML-based LRT clearly rejected
this reduced model (p-value= 0.0008).
As recommended in the literature, model selection between the different
possible fixed effects models we have fitted was based on the likelihood
ratio test and its log-likelihood function value (ML-based LRT). Finally, we
now proceed to interpret the results obtained in this model and reported in
Table 1. For the sake of brevity of exposition and the difficulty of including
all possible test results therein, p-values are not reported in Table 1.

4.2 Interpretation and conclusions

First of all, the clear and significant lineal and quadratic trends (regression
coefficients β1 and β2) explain and model the employment rate evolution
and behavior along time. We can observe that, during the pre-crisis period,
corresponding to the years 2005 to 2008, employment rates remain basically
constant, and then, in the year 2009, they start a clear descending trend.
With regard to the effect the variable educational level has on employment
rates, we can see a clear positive effect of this variable on the response vari-
able under study. Individuals with university studies have a mean estimated
employment rate about 32.1% above the one for individuals with only pri-
mary school studies (estimated regression coefficient δ1), and about 14.3%
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above the one for individuals with only high school studies (estimated re-
gression coefficient δ2). Therefore, these results support the claim that a
higher educational level significantly increases employment rates.
In addition, results also indicate that there are clear employment rate dif-
ferences for the different age intervals (estimated regression coefficients
γ2, γ3, γ4 and γ5) for males (the reference gender level), and with respect
to the reference age interval given by individuals in the age interval 16-
24 years old. In this way, male individuals in the interval 35-54 years old
have a mean estimated employment rate more than 70% above the one
for individuals in the reference age interval 16-24 years old, whereas this
difference becomes smaller for individuals in the age intervals 25-34 and
55-65 years old, being close to 54% for these two cases. In addition, the
proposed model also shows the clear existing difference between male and
female employment rates, which, as expected, does somehow depend on
the individuals’ age through the interaction terms in the model (estimated
regression coefficients θ2, θ3, θ4 and θ5). On the one hand, the smallest em-
ployment rate difference between males and females corresponds to younger
individuals, in the age interval 25-34 years old, a difference only about 3%
higher for female individuals (estimated regression coefficient λ + θ2). On
the other hand, the largest employment rate difference between males and
females corresponds to individuals in the age intervals 45-54 and 55-65 years
old, about 10% higher for male individuals (estimated regression coefficient
λ+ θ5).
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Abstract: The Complex Triparametric Pearson (CTP ) distribution is a count
data model useful for modelling situations with under- and overdispersion. The
aim of this work is to compare the CTP distribution with the negative bino-
mial, the complex biparametric Pearson and the univariate generalized Waring
distributions, all of them for overdispersed count data, the latter with three pa-
rameters. The comparison is made through the probability mass function, the
skewness and kurtosis coefficients and the Kullback-Leibler divergence. Finally,
some examples in the socio-economic field are included to illustrate the versatility
of the CTP distribution versus the aforementioned distributions.

Keywords: Overdispersion; Underdispersion; Models for count data.

1 The CTP distribution

The Complex Triparametric Pearson (CTP ) distribution, with parameters
a, b ∈ R, and γ > max(0, 2a), was developed by Rodŕıguez-Avi et al. (2004).
It is a count-data distribution of infinite range generated by the Gauss
hypergeometric function 2F1(a + ib, a − ib; γ; 1), where i is the imaginary
unit. Its probability mass function (pmf) is given by:

f(x) = f0
(a+ ib)x(a− ib)x

(γ)x

1

x!
, x = 0, 1, . . .

where (α)r = Γ(α + r)/Γ(α), α > 0 and f0 = Γ(γ−a−ib)Γ(γ−a+ib)
Γ(γ)Γ(γ−2a) is the

normalizing constant.
This distribution is a generalization of the Complex Biparametric Pearson
(CBP ) distribution (Rodŕıguez-Avi et al., 2003), since the latter appears
when a = 0.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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The main properties of the CTP distribution are summarized as follows (for
an exhaustive review of these properties see Rodŕıguez-Avi et al., 2004):

1. There are explicit expressions for the mean and the variance in terms
of the parameters of the model, that is,

µ =
a2 + b2

γ − 2a− 1
, σ2 = µ

µ+ γ − 1

γ − 2a− 2
.

To guarantee the existence of the mean and the variance it is clear
that γ > 2a+ 1 and γ > 2a+ 2, respectively.

2. If (a−1)2+b2

γ−2a+1 ∈ Z, the distribution has two consecutive modes in this
value and the previous one. In other case, the distribution is uni-
modal with mode in the integer part of that value. As a consequence,
the pmf is J−shaped or bell-shaped. Moreover, it is a right skewed
distribution.

3. It is underdispersed if a < −(µ+1)/2, equidispersed if a = −(µ+1)/2
or overdispersed if a > −(µ + 1)/2. In particular, if a ≥ 0 the CTP
is always overdispersed. This property makes the CTP distribution
more versatile to model a dataset.

4. A sufficient condition to be infinitely divisible (i.d.) is that a > −0.5
and γ > (a2 + b2)/(1 + 2a). So, if a < −0.5 the CTP distribution is
not i.d.

5. It converges to the Poisson distribution when γ and a2 + b2 → ∞
with the same order of convergence and to the normal distribution
when γ and

√
a2 + b2 have the same order of convergence.

2 Comparison with other count data distributions

To understand the differences between the CTP distribution and other
common distributions for count data, we compare them through the prob-
ability mass function and the Kullback-Leibler divergence. Specifically, we
consider in the comparison three distributions wich cope with overdispersed
count data: negative binomial (NB), CBP , and univariate generalized
Waring (UGW ) (see Johnson et al., 2005), the latter with three param-
eters like the CTP .
Since it makes no sense to compare two arbitrary distributions, we fix
the first two moments: mean (µ) and variance (σ2). The pmfs for the
NB,CBP,UGW and CTP distributions for several values of µ and σ2

appear in Figure 1. It is not possible to fix the third moment to compare
the CTP and the UGW , both with three parameters, because the first one
reduces to a particular case of the second (both are generated by the Gauss
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hypergeometric function with λ = 1). So, we consider b = 1 in the CTP
distribution and k = 2, 10 in the UGW . It can be observed that there are
differences among these distributions which are more evident as µ and σ2

increase.

FIGURE 1. P.m.f. of the NB,CBP,UGW and CTP distributions for several
values of the mean and the variance.

In addition, Figure 2 shows the values of the KL divergence between the
CTP and NB,CBP and UGW distributions, respectively (and vice versa)
in terms of σ2. For the sake of brevity we only consider µ = 4, γ = 4 in the
CTP distribution and k = 9 in the UGW . We observe that the CTP is
closer to the CBP than the UGW or the NB and the differences increase
as σ2 increases.

Powered by TCPDF (www.tcpdf.org)

FIGURE 2. Kullback Leibler divergence between the CTP and the NB,CBP
and UGW distributions (and vice versa) for several values of the variance.

3 Application examples

We include two examples in the educational field to illustrate that the CTP
distribution can provide more accurate fits than other usual distributions
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for count data (NB, CBP and UGW ). Specifically, we consider the number
of nursery and primary schools by municipality in Andalusia in 2011. Table
1 contains the values of the Akaike information criterion (AIC) related
to the maximum likelihood (ML) fits. In both cases the best fit is that
corresponding to the CTP model.

TABLE 1. AIC of the ML fits for data about the number of nursery and primary
schools by municipality in Andalusia in 2011.

NB CBP UGW CTP

Nursery schools 3679.745 3369.261 3479.611 3355.704
Primary schools 3280.572 2892.708 3068.55 2722.265

4 Conclusions

The comparison procedure shows that the CTP distribution has a differ-
ential shape with respect to the most common count data distributions.
An important difference with the NB, CBP and UGW distributions is
that the CTP is useful for both under- and overdispersed data. Also, it
can model real data more accurately when the modal value is not 0 and
with low overdispersion. The shape and the Kullback-Leibler divergence
also reveal important differences.
In order to use the CTP as a model for real data, we compare the fits
obtained for variables related to educational infrastructures in Andalusia
(Spain). Results show that the CTP is an adequate model for these type
of data.
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Abstract: In this paper we propose a class of semiparametric accelerated failure
time models in which the failure times follow a specific log-symmetric distribu-
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of the maximum penalized likelihood estimates. Model selection procedures are
proposed and a real data set is analyzed in R under the proposed models.
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1 Introduction

The aim of this paper is to propose a class of semiparametric accelerated
failure time models under the presence of non-informative left- or right-
censored data in which the failure times follow a specific log-symmetric
distribution. The log-symmetric class (see, for instance, Vanegas and Paula,
2016) contains various asymmetric continuous distributions with lighter or
heavier tails than the log-normal one, such as log-Student-t, Birnbaum-
Saunders, log-power-exponential, harmonic law and log-slash, among oth-
ers. The location and scale parameters are modelled in a semiparametric
way with the nonparametric components being approximated by B-splines
or P-splines. From an appropriate penalized log-likelihood function a back-
fitting algorithm is derived for the parameter estimation. Some model se-
lection procedures are also derived and a real data set is analyzed in R

under the proposed models.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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2 The model

We will consider the following accelerated failure time model:

Ti = ηiε
√
φi

i , (1)

for i = 1, . . . , n, where Ti denotes the failure (or censoring) time, ηi is
the location parameter (median) and φi > 0 is the scale parameter (skew-

ness) of the ith experimental unit, with εi
iid∼ LS(1, 1, g(·)) (standard log-

symmetric distribution), where g(u) > 0 denotes the density generator for

u > 0 and
∫∞

0
u−

1
2 g(u)du = 1. Each log-symmetric distribution may in-

clude extra parameters, ζ1 and ζ2, which are estimated separately by a
goodness-of-fit measure. The survival function of Ti may be expressed as
STi(t) = Sεi{(t/ηi)1/

√
φi}, where Sεi(·) denotes the survival function of εi.

Moreover, the median and skewness parameters are modelled as

ηi = exp{x>i β +

p′∑
j=1

fηj (aij)} and φi = exp{z>i γ +

q′∑
k=1

fφk(bik)}, (2)

for i = 1, . . . , n, where x>i = (xi1, . . . , xip) and z>i = (zi1, . . . , ziq) contain
explanatory variable values as well as (ai1, . . . , aip′)

> and (bi1, . . . , biq′)
>,

β = (β1, . . . , βp)
> and γ = (γ1, . . . , γq)

> are the regression coefficients and
fηj (·), j = 1, . . . , p′, and fφk(·), k = 1, . . . , q′, are continuous, smooth and
unknown functions, which are approximated by B-splines or P-splines.

3 Parameter estimation

Applying the Gauss-Seidel method (see, for instance, Hastie and Tibshi-
rani, 1990), the (u + 1)th step of the iterative process for obtaining the
maximum penalized likelihood estimates of β and τ η1 , . . . , τ ηp′ by fixing γ
and τφ1

, . . . , τφq′ may be expressed as

β(u+1) = {X>D(u)
η X}−1X>D(u)

η {ỹ(u) −
∑
` 6=0

Nη`τ
(u+1)
η`

}

τ (u+1)
ηj = {N>ηjD

(u)
η Nηj + ληjMηj}−1N>ηjD

(u)
η {ỹ(u) −

∑
` 6=j

Nη`τ
(u+1)
η`

}

for j = 1, . . . , p′ and u = 0, 1, . . .. The iterative process above should be
alternated with the following iterative process:

γ(s+1) = {Z>D
(s)
φ Z}−1Z>D

(s)
φ {z̃(s) −

∑
` 6=0

Nφ`τ
(s+1)
φ`

}

τ
(s+1)
φk

= {N>φkD
(s)
φ Nφk + λφkMφk}−1N>φkD

(s)
φ {z̃(s) −

∑
6̀=k

Nφ`τ
(s+1)
φ`

}
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FIGURE 1. Dispersion graphs between log(time) and age (left) and between
log(time) and bili (right) for the uncensored data from the PBC data set.

for k = 1, . . . , q′ and s = 0, 1, . . ., where X and Z are model matrices, Dη

and Dφ are diagonal matrices that depend on the assumed log-symmetric
distribution, Nηj , Nφk , Mηj and Mφk are matrices related with the spline
basis functions, whereas τηj and τφk are the respective coefficient vectors
and ληj and λφk the smoothing parameters, j = 1, . . . , p′ and k = 1, . . . , q′.
In addition, ỹ and z̃ are pseudo-response vectors whereas Nη0 = X and
Nφ0 = Z. The smoothing parameters are estimated by the AIC criterion.

4 Application

As illustration we will consider part of the data set available in the object
pbc of the R package survival, from the Mayo Clinic trial in primary
biliary cirrhosis (PBC) of the liver conducted between 1974 and 1984. The
data considered consist of n = 418 observations and include the response
variable, time, that denotes the number of days between registration and
the earliest of death, transplantation, or study analysis in July, 1986; and
other independent variables, such as status (0: alive at last contact, 1:
liver transplant, 2: death), edema (0: no edema, 0.5: edema present without
diuretics or edema resolved by diuretics, 1: edema despite diuretic therapy),
age, age in years and bili, level of serum bilirubin (mg/dl). By considering
the status condition “alive at last contact”as censoring, one has 55.50% of
censored data.
From Fig. 1 one may notice a linear tendency between log(time) and
age (with some indication of varying dispersion) and a nonlinear ten-
dency between log(time) and bili. Then, we will try to select a suit-
able model in the class (1)-(2) with systematic components log(ηi) =
β0+β1edema0.5i+β2edema1i+β3agei+fη(bilii) and log(φi) = γ0+γ1agei,
for 1 = 1, . . . , 418, where edema0.5 and edema1 denote dummy variables
whereas fη(bilii) is a nonparametric function approximated by a P-spline
with n = 10 knots. Comparing various log-symmetric models, the best
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FIGURE 2. Simultaneous 95% confidence intervals for fη(bili).

fit (smallest AIC) was attained under time ∼ log-powerexp(η, φ, ζ) with

ζ̂ = 0.55. The varying dispersion was not significant.
The models were fitted by the function ssym.l2() in the R package ssym

(Vanegas and Paula, 2016). We found the parameter estimates (approx-

imated standard errors) β̂0 = 9.066(0.298), β̂1 = −0.489(0.147), β̂2 =

−1.437(0.231), β̂3 = −0.022(0.005) and log(φ̂) = −1.186(0.123). The smooth-
ing parameter and the effective degrees of freedom were estimated as λ =
0.567 and df(λ) = 7.037, respectively. Fig. 2 presents the simultaneous 95%
confidence intervals for the nonparametric function fη(bili). The normal
probability plot with the quantile residuals from the selected model does
not present unusual features.
Therefore, based on the above results, one may conclude that the median
failure time (as well as any quantile) decreases as the age increases, is larger
for “no edema”condition and presents the behaviour in Fig. 2 according
with the level of serum bilirubin.
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Abstract: During last years, space-time point processes became a usefull tool in
modelling different random events from many fields such as medicine, biology or
economy. This work concerns using these processes for modelling of submissions
to municipalities in the Czech Republic. The positions and times of submissions
form the space-time point pattern which is to be analysed. The most appropriate
model is chosen from the list of continuous and discrete methods of modelling. The
suitability of this model is justified through classical methods of spatial statistics
using simulation studies. This work is extract of [Pidnebesna et al. (2016)].

Keywords: Cluster process; Empirical distribution; Statistical analysis; Statis-
tical modelling; Submissions to municipalities.

1 Introduction

Modelling of space-time point patterns has become widely used in the re-
cent time. Our purpose is to use the existing theory and technical avail-
ability for analysing and modelling the real-life processes.
We have a large amount of data describing submissions to municipalities
in the Czech Republic. The data is observed over a long period of time and
form an inhomogeneous space-time point pattern consisting of thousands
of points.
From the nature of the data it follows that using of space-time modelling
methods can give an suitable result in modelling such type of processes.
The theory of spatio-temporal processes is a new field which is still un-
der development, but there already exist many useful results. In the recent

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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papers, there were developed second-order characteristics for the inhomo-
geneous spatio-temporal point patterns, the separability properties were
studied using mentioned characteristics and methods, different types of in-
homogeneity were described, and the procedure of the estimate of wide
class of inhomogeneous processes were provided.
A significant part of the conducted analysis in our work is based on the
research mentioned above. The introduced methods assumes working with
the processes in continuous spaces, while in our case the data are roughly
discretised both in time and space. In order to provide as precise analysis
as possible, we used the continuous approach as well as the discrete one.
In this paper we describe the most suitable one.

2 Data description

The data were examined by stemming from the electronic records manage-
ment systems kept by the municipalities. The data consists of dates, ap-
plicants’ addresses, agenda and types of communication (electronic, post,
personal etc.). However, they were anonymised by the provider so that we
have no addresses but only postcodes (ZIP codes) at our disposal. There-
fore we identify the communicating person by position of appropriate post
office.
We have series containing the date of incoming communication and spatial
identification within the territory of the Czech Republic. The aim is to use
this data to analyse the spatial behavior and evolution over time. In accor-
dance with this aim we randomly chose a municipality. It is a municipality
located about 50km from Prague in the north-west direction in a village
having about 2.8 thousand of inhabitants.
The dataset includes 6205 space-time events corresponding to individual
submissions. The data were recorded in the time interval from 27th October
2009 to 20th April 2011. During this time interval 370 workdays took place.
The submissions came from 214 different ZIP codes.

3 Data model

At the beginning of our research, we proposed a flexible model for inhomo-
geneous cluster process in the continuous domain. Based on the exploratory
analysis we made, it was shown that the data forms cluster process, how-
ever the size of the clusters is too small (the scale is less then 1 km in space
and less then 1 day in time). Thus it was not possible to infer the precise
scale of the clusters from the data and the continuous domain modelling
is not appropriate for this dataset. Therefore we started to work with the
data in discrete domain.
We tested the hypothesis about independence of spatial and temporal coor-
dinates of the process, which was rejected. Further, we tested the hypothesis
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that number of repetitions for each space-time point could be described by
the Poisson distribution. This hypothesis also was rejected. That is why we
focused on the approach based on the empirical distributions.

In order to analyse temporal projection we constructed the periodogram.
From it and also from the nature of the data we found that the most
important time periods in the data are one month and one week. Further
we observed different behavior in different working days caused probably
by the fact that the office hours of municipalities are usually on Mondays
and Wednesdays. Therefore we divided the days into two groups

gr A = {Monday, Wednesday}, gr B = {Tuesday, Thursday, Friday}.
Let t ∈ {0, 1, . . . , T} and consider functions m(t) and d(t) describing to
which month and type of (working) day the time t correspond, namely
m(t) = 1 if t is a day in January, ..., m(t) = 12 if t is a day in December,
and analogously d(t) = A if t ∈ grA, and d(t) = B if t ∈ grB.

Our analysis of the data showed that we cannot work with the space and
the time separately, so we still consider the process of points on the lattice.
Now, we are interested in the distribution of the number of points in the
knots of the lattice. Thus, we consider the process represented as

X = {(ξ1, t1, η1), . . . , (ξN , tN , ηN )},
where ηi are independent random variables. Our analysis showed that this
variables could not be described by Poisson distribution therefore we focus
on the empirical distribution of η. Thus we work with the collection of in-
dependent random variables η′(ξ,m(t), d(t)) where ξ is the spatial position,
and m(t) and d(t) are defined above. Hence for each spatial position ξ, 24
empirical distributions (corresponding to 12 months and 2 different types
of day) are to be estimated.
For testing goodness of fit we used two approaches. The first one is the
construction of empirical envelopes for the statistics T1, . . . , T5:

• T1 – the number of knots of the lattice with exactly one point (so
called unique points),

• T2 – the number of knots of the lattice with more than one point,

• T3 – the average number of points in a knot conditionally there is at
least one point in the knot,

• T4 – the average number of points in a knot conditionally there are
more than one point in the knot,

• T5 – the total number of points.

The numerical results are presented in the Table 1. The second approach
is construction of the confidence intervals for the average number of sub-
missions per month and per (working) day. Our simulations showed that
our model is suitable for the data.
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TABLE 1. Testing the model based on the empirical distribution.

Statistics q2.5% q97.5% Data X Conclusion

T1 3027 3204 3141 Not reject
T2 1077 1177 1139 Not reject
T3 1.92 2.02 1.98 Not reject
T4 3.54 3.83 3.69 Not reject
T5 5994 6343 6205 Not reject

4 Conclusion

We realised that behavior of the process of submissions to municipalities
in the Czech Republic is very complicated in the sense that it cannot be
described neither by classical models of point processes such as Poisson
process or cluster processes nor by their modifications. Neither using Pois-
son distribution for modelling the number of points in the same time and
spatial coordinates was successful. Therefore, we suggested the procedure
based on empirical approach, which allows us to describe the process of
submissions to municipalities and make forecasts of future development.
Despite the procedure is time-consuming, because it requires separate cal-
culations for each spatial coordinate and each of the 24 combinations of the
month and the type of working day, we can evaluate it as suitable because
of its accuracy.
Finally note that the used methods were also applied to the data corre-
sponding to three other randomly chosen municipalities and the obtained
results were very similar.
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Abstract: Satellite images have received intensive attention from the technology
and scientific communities since its inception in 1946. One of the most important
applications which is routinely performed with satellites is the timewise monitor-
ing. This multitemporal sequence may be used for: sea glaciers movement assess-
ment; deforestation; changes in urban areas; among other applications. Several
methods are available in the literature for the change detection in temporal se-
ries of images. Threshold shrinkage based on ratio of subsequent images or on the
difference between subsequent images are among the most successfull methods.
In general the detection methods in SAR images follow a three-step procedure:
(1) pre-processing; (2) pixel-by-pixel comparisons; and (3) image thresholding.
We propose wavelet statistical tools which can substitute in one step the three
aforementioned steps. We show the advantages in a simulation study as well as
in a Pol-SAR Alpine glacier example (TERRA-SAR).

Keywords: Wavelet Analysis; Time Series; Satellite Images

1 Introduction

One of the most important applications which is routinely performed with
satellites is the timewise monitoring. This multitemporal sequence may be
used for: sea glaciers movement assessment (Fily and Rothrock, 1987); de-
forestation (Almeida-Filho and Shimabukuro, 2000); and changes in urban
areas (Gamba et al., 2006; Ban and Yousif, 2012). A particular application
of interest for this paper is the remote monitoring via time series analysis
of satellite data of regions that are difficult to access. The real data which
is analyzed in this work regards the Alpine region that includes Chamonix,
the Mont Blanc, and the Argentierre and Mer de Glace glaciers.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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Suppose that T images at different times are taken by SAR of an image
of interest, say I1, . . . , IT . Trang-Lê et al. (2015) and Atto et al. (2013)
propose the use of matrices of temporal dissimilarities to both detecting
the time-points which present the most significant changes, and, for the
time-points so selected, a thorough pixel-by-pixel dissimilarity analysis.
A wavelet representation for each image is obtained, called it {A,H, V,D},
where A, H, V and D represent the vector of wavelet coefficients for the
approximation, horizontal, vertical and diagonal subspaces, respectively.
Based on a set of fixed distributions, each image is associated with the
best fitted density for the detail coefficients {H,V,D}. Then the Kulback-
Leibler distance for each two pair of time images is computed, generating
the so-called matrix for change detection. An analogous procedure is per-
formed for the selected images on smaller images, trying to define where
any change has happened. This parametric set-up is suboptimal both sta-
tistically and computational, the former because there is no guarantee that
the collection of distributions is exhaustive and the latter because the max-
imum likelihood estimation is numerically intensive, specially for the sub
images problem. Just as an example, an image of size 2048x2048, which is
not exactly very large, will have 64x64 sub images on each the maximum
likelihood must be performed.
What we do here is to substitute the parametric idea by a nonparametric
one. First, we do not define beforehand which distributions will be com-
pared. We simply use wavelet density procedures to estimate the densities
for each time. Pinheiro and Vidakovic (1997) proposes a non-negative den-
sity wavelet estimator. The idea is simple and powerful. When estimating a
function g one must represent g in a multiscale analysis, which is only pos-
sible only if g is square integrable. For a density f if one estimates g =

√
f ,

g is always square integrable. Moreover, since f̂(x) = (
√̂
f(x))2 one does

not get the unsettling (but common in nonparametrics) result of negative
density estimates. Moreover, since f integrates to 1 one can smpily renor-
malize the coefficients, by Parseval’s equality, to preserve the comparability
of density estimates across time points. The times are then compared by
the Hellinger distances between their densities of coefficients.

2 Results

Some important information regarding the wavelet procedures are the fol-
lowing:

1. Due to speckle, soft threshoiding is recommended (Donoho, 1995).
The method is robust in the sense that thresholding levels and paradigm
do not qualitatively change the dissimilarities matrix, i.e., data points
which are similar in one thresholding policy maintains this status for
the rest.
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2. Compactly supported wavelets (symm8) are used because of its smooth-
ness and filter size.

3. The densities were computed for each detail subspace separately. We
should understand that the parametric set of densities for each image
(V,H,D) would not necessarily fit to the same density: this was sim-
ply numerically too much. Results here show that this is important
to increase power.

4. Wavelet thresholding deals with noise reduction and change-point
detection at the same time.

There are 11 time points in the TERRA-SAR images which have three
different polarizations. The matrices for each polarization are shown as the
columns in Figure 1(a). This figure shows the nine (three subspaces V , H
and T and three channels), and one can see that the results are consistent
for the wavelet subspaces but differ slightly for the channels, as expected.

(a) (b) (c)

FIGURE 1. (a) Dissimilarity Matrices (b) Relevant wavelet coefficients (c) Unim-
portant wavelet coefficients

FIGURE 2. Image changes along time

The matrices for each sub image were also used with similar success. How-
ever there is also the changes in wavelet coefficients along time which may
be used. Figure 1(b)-(c) show the huge differences for coefficients which are
due to temporal changes in the images.
A simulation study was also done. The results show that wavelet methods
are more robust to misspecification then the parametric competitors. If the
’model’ is right, the wavelet procedure loses but not by the same margin it
over performs a poorly specified parametric procedure. Figure 2 shows the
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different simulated changes in the images from the first to the other time
points.
The conclusions are that wavelet methods outperform parametric methods
because: (i) of the possibility of reducing steps in the analysis; (ii) of its
robustness to model missspecification; (iii) it is computationally much less
intensive.
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Abstract: We use here zero-one inflated beta models with heteroscedasticity
to model the proportion of failed courses in Engineering students at the State
University of Campinas, Brazil. We also model the GPA score for those students
with a heteroscedastic skew t distribution. The database consists of more than
3000 students with Engineering majors who entered in the University from 2000
to 2005. The entrance exam score (ESS) in each subject, some academic vari-
ables and their socioeconomic status are considered as covariates in the models.
Diagnostics and residual analysis are performed as well.
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1 Introdution

The database consists of more than 3000 students with Engineering ma-
jors who entered in the State University of Campinas, Brazil from 2000
until 2005. For each student we have all the grades in the required courses
taken in the university as well as the proportion of courses he/she failed
during his/her Bachelor’s degree. We also have their entrance exam scores
- EES in each subject (e.g., Mathematics, Portuguese, Geography, History,
Biology, Chemistry and Physics), some academic variables as well as their
socioeconomic status, which are considered as covariates in the models.
For modelling the proportion of failed courses, we use a zero and one in-
flated beta regression model (Ospina and Ferrari, 2010) with heteroscedas-
ticity

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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The GPA (Grade Point Average) scores were standardized within each year
and course/major and its model is heteroscedastic with a skew t distribu-
tion (Azzalini, 1986).

2 Statistical Models

For the proportion of failed courses a zero-one inflated beta model was used
and its distribution is given by

p(y;α, γ, µ1, φ) =


α(1− γ), if y = 0
(1− α)f(y;µ1, φ), if y ∈ (0, 1)
αγ, if y = 1
0, if y /∈ [0, 1]

(1)

with f(y;µ1, φ) =
Γ(φ)

Γ(µ1φ)Γ((1− µ1)φ)
yµ1φ−1(1− y)(1−µ1)φ−1, y ∈ (0, 1).

Note that now E(Y ) = αγ + (1 − α)µ1 and V ar(Y ) = αV1 + (1 − α)V2 +
α(1 − α)(γ − µ1)2, with V1 = γ(1 − γ) and V2 = µ1(1 − µ1)/(φ + 1). For
more details see Ospina and Ferrari (2010).
We model µ1 and σ = 1/(φ + 1) with logit link and ν1 = α(1 − γ) and
τ1 = αγ with a log link.
For the GPA scores, a skew t type 1 model (ST1) was used with the
distribution given by FY (y | µ2, σ

∗, ν2, τ2) = (2/σ∗)fZ1(z)FZ1(ν1z), for
y ∈ (−∞,∞), where µ2 ∈ (−∞,∞), σ∗ > 0, ν2 ∈ (−∞,∞), τ2 > 0,
z = (y−µ2)/σ∗ and fZ1

and FZ1
are the pdf and cdf of Z ∼ TF (0, 1, τ2), a

t distribution with τ2 degrees of freedom (treated as continuous parameter)
and ν2 is the skewness parameter. For more details of the ST1 distribution
see Azzalini (1986).

3 Application and Results

Looking at the histograms for the GPA scores and for the proportions of
failed courses, we noticed that the distribution of the GPA scores for the
required courses of the Engineering major students are skewed to the left
and for the proportion of failed scores, there is a high frequency of zeros
and also some frequency of ones. Therefore, we tried to model the GPA
with normal, skewed normal, gamma and skewed t distributions. For the
proportion of failed courses we used a zero and one inflated beta model.
The gamlss package, available in the R-Project, was used to fit the models
(Rigby and Stasinopoulos, 2005; Stasinopoulos and Rigby, 2007).
In order to understand better the quantitative variables of the data set, we
computed Spearman correlations between the quantitative variables where
Y1 is the proportion of failed courses, Y2 is the GPA score, X1 is the EES in
Physics, X2 is the EES in Math, X3 is the EES in Biology, X4 is the EES
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in Chemistry, X5 is the EES in Portuguese, X6 is the EES in Geography,
X7 is the EES in History. We found that the highest correlation is between
the proportion of failed courses and the GPA (-0.858), which was already
expected, but the correlations between the Entrance Exam Scores (EES’s)
in all subjects are all very low, with the highest correlations being between
Physics and Math (0.371), Physics and Chemistry (0.322), Geography and
History (0.385). All the correlations between the ESS’s and Y1 and between
the EES’s and Y2 are less than 0.2.
The best model for the mean proportion of failed courses (µ1) with logit
link showed significant effects of year (2000, 2001, 2002, 2003, 2004 and
2005), sex, age (< 17, 18−20 and > 21 years), type of High School (Public
or Private), type of engineering major, EES in Physiscs, Biology, Chemistry
and Portuguese, as well as the status of graduation (Graduated or Did not
graduate), the number of semesters in the university (1 to 8, 9 to 10 and
≥ 11 semesters) and an interaction between the latter two. The model of
the proportion of zeros (ν1) with log link had significant effects for year,
sex age, family income, type of engineering major as well as the status of
graduation and the number of semesters in the university. The best model
for the dispersion parameter (σ) with logit link showed significant effects
for age, type of engineering major, status of graduation, the number of
semesters in the university and an interaction between the latter two. Note
that here the larger the σ̂ value, the larger is the variance of Y1.
The course (type of engineering major) codes in the models for µ1 and ν1

are: 8 = Agricultural Engineering; 9 = Chemical Engineering (daytime);
10 = Mechanical Engineering; 11 = Electrical Engineering (daytime); 12
= Civil Engineering; 13 = Food Engineering (daytime); 34 = Computa-
tional Engineering, 39 = Chemical Engineering (night); 41 = ; 43 = Food
Engineering (night); 49 = Automation and Control Engineering.
There is not much difference on the proportion of failed courses (µ1) among
the years, but the proportion of zeros (ν1) seems to be smaller in 2005,
followed by 2004 compared with the other years. Male students have greater
proportion of failed courses (µ1) than Female, but the proportion of zeros
(ν1) is smaller for Male than Female students. The younger the students
the fewer courses they fail and, of course, the proportion of zeros is higher
for younger students.
The higher the score in the Entrance Exam the less courses they fail. The
students with lower income have a bigger proportion of zeros. The lowest
proportion of failed courses is of the Automation and Control Engineering
students followed by Food Engineering (night) students. The course/major
with the higher proportion of failed courses is Mechanical Engineering.
When looking at the model for ν1, the highest proportion of zeros is for
the Food Engineering students and the smallest is for Civil Engineering
students. There is an interaction effect between the status of graduation and
the number of semesters in the university in the model for µ1 For those who
graduated, the lower proportion of failed courses is for those who stayed 9
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to 10 semesters in the university, followed by those who stayed at least 11
semesters and then those who stayed 1 to 8 semesters. On the other hand,
for those who did not graduate, the lower proportion of failed courses is for
those who stayed 1 to 8 semesters, followed by those who stayed at least
11 semesters and then those who stayed 9 to 10 semesters. The proportion
of zeros (ν1) is higher for those who graduated. The proportion of ones
(τ1) is estimated to be exp(−4.05) = 0.017 and it is significantly different
from zero (p-value < 0.0001). The smallest dispersion (σ) is for those who
graduated and stayed 9 to 10 semesters, are at most 21 years of age and
are from Agricultural Engineering. The biggest dispersion is for those who
did not graduate, are over 21 years old, are from the baseline courses (10,
11, 13, 34, 39, 41, 43, 9) and stayed 1 to 8 semesters at the university.
The best model for the GPA is a heteroscedastic skew t with identity link
for the mean (µ2) and log link for the dispersion (σ∗). For the models for
GPA and the dispersion, one can say that the younger the student and the
greater his/her EES’s, the greater is his/her GPA. Students from Public
High Schools (PuHS) and Female have greater GPAs. There is an inter-
action between the status of graduation and the number os semesters For
those who graduated and stayed 9 to 10 semesters, the GPA score is greater
than those who drop out or were still active. Also, the more semesters they
stayed in the University, the worst is their GPA. The skewness parameter
was found to be negative (ν̂2 = −0.32) and significantly different from zero
(p-value=0.018), which makes sense, since the distribution of the GPA is
skewed to the left. The model for the dispersion parameter (σ∗) showed that
only the status of graduation and the number of semesters was found to be
significant, but with an interaction between them. The greater variability
was found to be for those who did not graduate and stayed 1 to 8 semesters
in the university, which makes sense as these are the students who drop out
for various reasons. On the other hand, the smallest variability was found
to be for those who graduated in 9 to 10 semesters.

References

Azzalini, A. (1986). Further results on a class of distributions which in-
cludes the normal ones. Statistica, 46, 199 – 208.

Ospina, R. and Ferrari, S. L. P. (2010). Inflated beta distributions. Sta-
tistical Papers, 51, 111 – 126.

Rigby, R. A. and Stasinopoulos D. M.. (2005). Generalized additive mod-
els for location, scale and shape,(with discussion). Appl. Statist., 54(3),
507 – 554.

Stasinopoulos, D. M. and Rigby, R.A. (2007). Generalized additive mod-
els for location scale and shape (GAMLSS) in R. Journal of Statistical
Software, 23 (7).



Double-saddlepoint approximation for
enumeration of tables for exact tests of
Hardy-Weinberg proportions

Xiaoyun Quan1, James G. Booth2

1 Cornell University, Ithaca, NY, USA

E-mail for correspondence: xq44@cornell.edu

Abstract: Exact tests for Hardy-Weinberg proportions are widely applied in
population genetics to determine random mating. The feasibility of exact tests
requires information on the number of all possible tables of genotype counts
given the observed allele counts. However, complete enumeration can be imprac-
tical when the allele counts are large. An approximation method has been pro-
posed by Engels (2009). However multiple alleles and sparse data can render
the approximation unreliable. An alternative method is proposed here using a
double-saddlepoint approximation results in much better performance.
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1 Formulation of the problem

In population genetics, random mating is a crucial assumption to assess be-
fore making any further analysis. This can be done by conducting an exact
test of Hardy-Weinberg proportions similar to Fisher’s exact test for inde-
pendence in contingency tables. Feasibility of this test requires knowledge
of total number of possible tables of genotype counts that are consistent
with the observed allele counts. For a vector of genotype counts at k-allele
loci g = (g11, g21, ..., gk1, g22, ..., gkk) where gij is the count of genotype ij
(a diploid with alleles i and j), the table of the genotype counts is usually
displayed in the form of a lower-triangular matrix

G =


g11

g21 g22

...
...

. . .

gk1 gk2 · · · gkk


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from which the count of ith allele can be calculated as

mi = 2gii +
∑
i>j

gij .

Notice that there are g = k(k + 1)/2 possible genotypes, and the sample
size is given by n =

∑
i≥j gij .

Implementation of the exact test requires the enumeration of all possible
genotype matrices G that are consistent with the vector of observed allele
countsm. However, complete enumeration is not feasible with large counts.
Engels (2009) proposed Normal Approximation as a modification of Gail
and Mantel’s method (1977). However the Normal Approximation method
can be unreliable when the sample matrix of genotype counts is sparse. In
this paper we investigate the use of an alternative approximation proposed
by Zipunnikov, Booth and Yoshida (2009) and show that it is much more
accurate than the normal approximation.

2 Normal Approximation versus Double-saddlepoint
Apprximation

The two methods share the same basic idea that the number of possible
tables given a fixed set of allele counts, |Sm|, is equal to the product of
total number of tables for the given sample size without restrictions on
allele counts, |S|, and the probability assuming a uniform distribution over
all possible genotype matrices that the particular fixed set of allele counts
is randomly selected, P (m); that is:

|Sm| = |S| · P (m)

The total count |S| is obtained by considering the genotype distribution
as ‘stars and bars’ problem: the genotypes of the n individuals are seen as
‘stars’ to be randomly placed between g − 1 bars, which gives

|S| =
(
n+ g − 1

g − 1

)
.

The difference between normal and double-saddlepoint method lies in the
approximation of the probability P (m).
The normal approximation method estimates the probability by approxi-
mating the allele count distribution (assuming a uniform distribution over
the set of genotype matrices) by a multivariate normal distribution. En-
gels (2009) uses the probability distribution from ‘stars and bars’ model
to determine the expected value and covariance matrix for the set of allele
counts. Then, the method of Gail and Mantel (1977) can be adapted to
approximate P (m).
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The double-saddlepoint approximation method (Zipunnikov et al. 2009)
involves fitting a generalized linear model (GLM) in which the genotype
counts gij are assumed to independent geometric variables so that the con-
ditional distribution of the genotype counts given their sum is uniform over
all possible genotype mamtrices if the geometric variables are identically
distributed. Specifically, consider the GLM with with parameter vector λ,
the log-likelihood is given by

l(λ) = gTXλ+

g∑
i=1

log (1− exp (xT

i λ))

where xi is the ith row of X. We consider two forms for the design matrix
X. In model 1, X1 = 2g, a 2-vector of length g. In model 2, XT

2 g = m,
the vector of allele counts. Notice that, because each genotype consists of
exactly two alleles, each row of X2 sums to 2, and hence model 1 is a
special case of model 2.
Using this GLM formulation we can estimate the conditional probability of
the allele count vector m given n, by the ratio of two saddlepoint density
approximations (Daniels, 1954), as suggested by Zipunnikov et al. (2009).
Specifically,

P (m) ≈ f̂ (m|n) =
|2πÎm|−1/2e−l̂m

|2πÎn|−1/2e−l̂n

where În and Îm are the Fisher information matrices for the two mod-
els 1 and 2 respectively, and l̂n and l̂m are the corresponding maximized
likelihoods.
Zipunnikov et al (2009) also suggested further improvements on the accu-
racy of double-saddlepoint approximation by adding higher order correction
terms. Two types of corrections are considered: additive and exponential.
Both corrections typically improve the accuracy of the approximation, with
the exponential correction generally being the preferred choice.

3 Results comparison

To compare the performance of the various methods, we consider three
sample data sets from Engels (2009) paper, all of which had appeared in
earlier literature concerning exact tests for Hardy-Weinberg proportions.
The data sets are genotype count matrices A, B and C in Figure 1 of En-
gels (2009) paper. The performances are listed in Table 1 below, where
for each sample the exact numbers of table counts and percentage errors
of normal approximation (‘Normal’), double-saddlepoint (DS) approxima-
tion, DS approximation with additive correction term (‘DS additive’), and
DS approximation with exponential correction term (‘DS exp’) are given.
It can be seen that if the allele counts are large or the genotype matrix
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FIGURE 1. Sample genotype matrices from Engels (2009) paper.

is sparse, the double-saddlepoint approximation outperforms the normal
approximation. Furthermore, adding the higher order correction terms im-
proves the accuracy even more.

TABLE 1. Performances of Normal vs D-S approximation methods.

sample Exact numeration Normal DS DS additive DS exp

A 162365 -2.36 +7.76 +2.18 +2.01
B 250552020 +15.97 -9.71 +0.55 +0.09
C 1289931294 +24.61 +1.32 +0.39 +0.38

Notice that for the large sample genotype matrix D, complete enumeration
via Mathematica (Engels 2009) is not feasible. The normal approxima-
tion, DS approximation, DS with additive correction and DS with expo-
nential correction methods estimate the number of tables as 2×1056, 2.03×
1044, 1.86× 1044 and 1.87× 1044 respectively.
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Abstract: During the past decade, the modeling of multivariate count data has
attracted researchers particularly in the field of epidemiology, finance, agricul-
ture and economics. The Conway-Maxwell Poisson distribution, a two-parameter
generalisation of the Poisson distribution, is a flexible tool for researchers and
statisticians to model under-, equi- as well as over-dispersed counts. Until now,
the CMP distribution has been intensively used in univariate cross-sectional and
longitudinal regression modeling and till date, no extension of the CMP model in
the multivariate set-up has been made. In this paper, we attempt to formulate a
Bivariate CMP (BCMP) distribution using the copula techniques. Archimedian
copula constructors such as the Clayton, Frank, Gumbel and Ali Mikhail-Haq
copulas are used to capture the dependence structure in between the two CMP-
Poisson marginals. The parameters of the proposed set ups will be estimated using
the Inference for Margins (IFM) principle wherein the parameters of the CMP
marginals are estimated separately and the converged estimates are then used
to obtain the copula (dependence) parameter via a Newton-Raphson iteration.
A simulation study is also devised to test the performance of the BCMP-Copula
models. The simulation study concludes that the BCMP-Gumbel model provides
the best maximum likelihood estimates for the dependence parameter.

Keywords: COM-Poisson; Copulas; Simulation; Inference for Margin.

1 Conway-Maxwell Poisson

The CMP distribution belongs to the family of exponential densities and
is suitable for modelling all types of dispersed data. In several simulation
studies and real-life experiments, the CMP distribution has also shown to
provide equally good fits as the Negative Binomial or Generalised-Poisson
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copyright remains with the author(s). Permission to reproduce or extract any
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models in the context of over-dispersion. Sellers and Shmueli (2010) de-
veloped a Maximum Likelihood Estimation (MLE) for a single link GLM
involving the CMP distribution. In terms of the inference procedures, the
MLE via the Fisher-Scoring (FS) algorithm adaptation has been used to
estimate the mean and dispersion parameters.

1.1 Developing the BCMP-Copula

For a given random variable Y , the CMP’s pdf is expressed as:

f(y) =
λy

(y!)νZ(λ, ν)
, y = [0,∞], λ > 0, ν ≥ 0 (1)

where ν is the dispersion parameter and Z(λ, ν) =
∑∞
s=0

λs

(s!)ν .

To facilitate the computation of parameters, Minka et al. (2003) suggested
the asymptotic approximation of the normalising constant.

Z(λ, ν) =
eνλ

1/ν

λ
ν−1
2ν (2π)

ν−1
2
√
ν

[1 +O(λ−1/ν)] (2)

From which, E(Y ) ≈ λ1/ν − ν−1
2ν , Var(Y ) ≈ λ1/ν

ν .
We develop a BCMP model based on the closed-form weight structure
by using four commonly used copulas in the discrete context: Frank (F),
Gumbel (G), Ali-Mikhail Haq (AMH) and Clayton (C).

• BCMP-C

fC(y1j , y2j ;κ) = CCκ (F1(y1j), F2(y2j))f1(y1j)f2(y2j); (3)

CCκ (u1, u2;κ) = (u−κ1 + u−κ2 − 1)−1/κ, κ ∈ [−1,∞]

• BCMP-F

ff (y1j , y2j ;κ) = Cfκ (F1(y1j), F2(y2j))f1(y1j)f2(y2j); (4)

CFκ (u1, u2;κ) = − 1

κ
log

{
1 +

(e−κu1 − 1)(e−κu2 − 1)

e−κ − 1

}
, κ ∈ [−∞,∞]

• BCMP-G

fG(y1j , y2j ;κ) = CGκ (F1(y1j), F2(y2j))f1(y1j)f2(y2j); (5)

CGκ (u1, u2;κ) = exp{−[(− lnu1)θ + (− lnu2)κ]1/κ}, κ ∈ [1,∞]

• BCMP-AMH

fAMH(y1j , y2j ;κ) = CAMH
κ (F1(y1j), F2(y2j))f1(y1j)f2(y2j); (6)

CAMH
κ (u1, u2;κ) =

u1u2

(1 + κ(1− u1)(1− u2))
, κ ∈ [−1, 1]
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The estimation procedure is carried out via IFM, Joe and Xu (1996), where
the BCMP parameters are first obtained under the independence assump-
tion. In the second step, the copula part of the likelihood equations is
maximised to obtain the corresponding dependence parameter.

2 Simulation and Results

10,000 pairs of counts are drawn from a Bivariate Normal distribution
with µ = (0, 0)T and a compound symmetrical covariance structure with
parameters ρ = 0.3, 0.5, 0.9. The pairs are transformed into CMP counts
using the Cornish-Fisher expansion. For equi-dispersion, λ1 = λ2 = 5 and
ν1 = ν2 = 1. For under-dispersion, λ1 = λ2 = 15 and ν1 = ν2 = 1.1
while for over-dispersion, λ1 = λ2 = 4 and ν1 = ν2 = 0.5. The parameters
for over- and under-dispersion have been chosen such that both satisfy the
condition λ > 101/ν for which the approximation (2) becomes accurate. The
results including the AIC under each set up are summarised in Table 1.

TABLE 1. MLE of Simulated Data.

ρ λ̂1 λ̂2 ν̂1 ν̂2 κ̂C κ̂F κ̂G κ̂A

0.3 5.589 1.064 5.393 1.045 0.443 1.946 1.180 0.719
87181 86975 87143 87020

0.5 5.219 1.026 5.208 1.025 0.820 3.423 1.385 NA
86250 85617 85802 NA

0.9 5.198 1.024 5.132 1.018 3.244 11.155 2.862 NA
76714 73973 73556 NA

0.3 15.013 1.099 14.896 1.095 0.270 1.731 1.185 0.634
103729 103393 103468 103450

0.5 14.917 1.098 15.081 1.099 0.628 3.391 1.447 NA
102293 101365 101344 NA

0.9 15.197 1.104 14.597 1.087 2.863 11.356 3.049 NA
92791 89528 88664 NA

0.3 4.106 0.504 3.998 0.495 0.270 1.945 1.242 0.675
126071 125721.1 125720.5 125794

0.5 4.012 0.497 3.911 0.488 0.512 3.273 1.460 NA
125098 124302 124160 NA

0.9 4.027 0.498 4.027 0.498 2.537 11.664 3.199 NA
115773 111684 110657 NA

The main remarks from Table 1 are that the simulated values of λ̂1, λ̂2,
ν̂1 and ν̂2 are reliable for the chosen sample size of 10,000. The maximum
likelihood estimates of the CMP parameters are in fact significant and close
to their expected values under each dispersion case.
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In the second step, the estimated values of the CMP marginals were used
to obtain the Copula (dependence) parameters.
The copula parameters estimated are all significant and within their permis-
sible range. It is noted that values of κ̂A are not obtained for ρ = 0.5, 0.9 as
the copula parameter will always be out of range when the product-moment
correlation is not within (-0.271, 0.478) when marginals are uniform or ap-
proximately (-0.300,0.600) for normal marginals - Johnson (1987). From
the AIC values reported, the BCMP-G model offered the best estimate
across all levels of dispersion for ρ = 0.5, 0.9 while the BCMP-F model is
most suitable when ρ = 0.3.
It is nevertheless observed that the difference in AIC values reported under
the Frank and Gumbel copula models are very close to each other.

3 Conclusion

This paper introduces the setting up of Bivariate Conway-Maxwell Poisson
models using Copulas. Four BCMP-Copula models namely the BCMP-
Clayton, BCMP-Frank, BCMP-Gumbel and BCMP-AMH were proposed
and tested via a simulation study designed to generate CMP counts at
different levels of dispersion. The BCMP-F model is recommended in the
case of low correlation while the BCMP-G set up is most suitable for higher
correlations. Aside from the BCMP-AMH under high correlation set-ups,
the proposed models, performed well during the simulation study. Through
BCMP-Copula models, a more flexible approach towards time series anal-
ysis and Bivariate analysis of counts can be undertaken for the future.
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Abstract: We propose a new method to select the tuning parameter in lasso
regression. Unlike the previous proposals, the method is iterative and thus it is
particularly efficient when multiple tuning parameters have to be selected. The
method also applies to more general regression frameworks, such as generalized
linear models with non-normal responses. Simulation studies show our proposal
performs well, and most of times, better when compared with the traditional
Bayesian Information Criterion and Cross validation.
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1 Introduction

In the context of high-dimensional data, typically only a small number of
variables are truly informative whilst other are redundant. Selecting the ap-
propriate variables is a crucial step of data analysis process. An underfitted
model excluding truly informative variables may lead to severe estimation
bias in model fit, whereas an overfitted model including redundant unin-
formative variables, increases the estimated variance and hinders model
interpretation.
Among different variable selection methods discussed in literature, penal-
ized regression models have gained popularity and attractiveness. Selection
of variables is controlled by the tuning parameter which encourages model
sparsity. Well known procedures include the Least Absolute Shrinkage and
Selection Operator (LASSO, Tibshirani, 1996), the Smoothy Clipped Abso-
lute Deviation (SCAD, Fan and Li, 2001), the Adaptive LASSO (ALASSO,
Zou, 2006), and the Elastic Net (Zou and Hastie, 2005). In penalized re-
gression, the tuning parameters balance the trade-off between model fit
and model sparsity, and selecting an appropriate value is the key point. In

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
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literature, traditional criteria to select the tuning parameter include Cross-
Validation (CV), Generalized Cross-Validation (GCV), Mallows Cp, Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC).
Broadly speaking, Wang, Li and Tsai (2007b) found that the resulting
model selected by GCV tends to overfit, while the BIC is able to identify
consistently the finite-dimensional true model. Wang, Li and Tsai (2007b)
also indicated that GCV is similar to AIC. Nowadays, many authors pro-
posed to select the tuning parameters through the k-fold CV, which is
also the default option in several R packages. The common feature of
the aforementioned traditional methods is the grid-search optimization,
wherein several candidate tuning parameter values are fixed and different
models corresponding to such selected values are fitted.
This article proposes a tuning parameter selection method based on an
iterative algorithm which works not only in the classical framework n > p
but also in the high-dimensional n ≤ p or very high-dimensional setting
n � p. The rest of the article is organized as follows. Section 2 briefly
presents the iterative algorithm, Section 3 shows some simulation studies
and Section 4 gives some conclusions about the new method proposed.

2 Methods

In LASSO regression with sample size n and p covariates, the objective is
to find a solution of the following optimization problem:

min
β

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

|βj |. (1)

As discussed in the Introduction, typically one fixes the tuning parameter
λ that balances the trade-off between sparsity and fitting, and then min-
imizes objective (1) by means of any of optimization algorithms recently
developed, e.g. gradient descent or lars.
To set up an iterative algorithm to find λ, we borrow the Schall algorithm
idea successfully employed to estimate the variance components in random
effects models. More specifically, starting from an initial guess, λ(0) = .001,
say, the algorithm alternates estimation of lasso regression (at fixed λ) and
updating of the tuning parameter via the variance ratio properly modified
to account for the L1 penalty.

3 Simulation Studies

Some simulations have been undertaken to compare the traditional selec-
tion criteria, BIC, GCV, CV with respect to the proposed algorithm. To
assess the performance of each selection criterion, we report degrees of free-
dom (df , the number of non null coefficients), and the mean squared error
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(MSE) corresponding to OLS fits including only the informative covariates
selected.

TABLE 1. Performance of Tuning Parameter Selector criteria in LASSO Re-
gression (BIC/EBIC, GCV, CV and the proposed algorithm, New): MSE for 2
different sample sizes and several p/n ratios. Results based on 500 simulation
runs.

n = 50 n = 200

p/n (E)BIC GCV CV New (E)BIC GCV CV New

n > p
0.15 0.150 0.163 0.171 0.125 0.059 0.107 0.103 0.029
0.25 0.183 0.218 0.218 0.136 0.061 0.142 0.128 0.030
0.35 0.214 0.288 0.283 0.132 0.069 0.170 0.157 0.031
0.45 0.219 0.324 0.308 0.146 0.068 0.199 0.172 0.030
0.55 0.253 0.370 0.361 0.148 0.077 0.225 0.202 0.031
0.65 0.245 0.399 0.375 0.151 0.070 0.233 0.204 0.032
0.75 0.266 0.449 0.403 0.150 0.075 0.261 0.214 0.030
0.85 0.258 0.502 0.412 0.182 0.073 0.269 0.235 0.031
0.95 0.277 0.577 0.422 0.185 0.076 0.284 0.236 0.030

n ≤ p
1 0.303 0.721 0.443 0.204 0.079 0.304 0.241 0.029
2 0.335 0.590 0.566 0.138 0.087 0.347 0.299 0.030
4 0.420 0.757 0.681 0.225 0.088 0.436 0.357 0.030
8 0.477 0.824 0.724 0.264 0.096 0.548 0.031 0.030
16 0.496 0.851 0.778 0.318 0.106 0.632 0.495 0.031
32 0.607 0.922 0.757 0.392 0.121 0.706 0.558 0.031
64 0.844 0.991 0.788 0.434 0.125 0.745 0.564 0.032

TABLE 2. Performance of Tuning Parameter Selector criteria in LASSO Regres-
sion (BIC/EBIC, GCV, CV and the proposed algorithm, New). Average degrees
of freedom and average number of correctly selected variables (in brackets) for
2 different sample sizes and several p/n ratios. Results based on 500 simulation
runs.

n = 50 n = 200

p/n (E)BIC GCV CV New (E)BIC GCV CV New

n > p
0.15 5.7(5) 6.2(5) 6.4(5) 5.1(5) 6.3(5) 11.1(5) 10.8(5) 5.0(5)
0.25 6.2(5) 7.3(5) 7.6(5) 5.2(5) 6.1(5) 12.8(5) 11.6(5) 5.0(5)
0.35 6.5(5) 8.9(5) 8.8(5) 5.1(5) 6.4(5) 14.1(5) 13.1(5) 5.0(5)
0.45 6.6(5) 9.6(5) 9.2(5) 5.4(5) 6.2(5) 15.8(5) 13.5(5) 5.0(5)
0.55 7.2(5) 10.9(5) 10.5(5) 5.5(5) 6.4(5) 17.4(5) 15.0(5) 5.0(5)
0.65 6.6(5) 11.2(5) 10.4(5) 5.3(5) 6.0(5) 17.2(5) 14.4(5) 5.0(5)
0.75 7.0(5) 12.7(5) 11.0(5) 5.3(5) 6.3(5) 19.4(5) 15.1(5) 5.0(5)
0.85 6.7(5) 14.7(5) 10.9(5) 5.7(5) 6.1(5) 19.5(5) 16.0(5) 5.0(5)
0.95 7.1(5) 18.8(5) 11.1(5) 5.9(5) 6.2(5) 20.5(5) 15.5(5) 5.0(5)

n ≤ p
1 7.1(5) 26.4(5) 11.1(5) 5.8(5) 6.4(5) 22.6(5) 16.0(5) 5.0(5)
2 7.5(5) 14.2(5) 13.7(5) 5.1(5) 6.3(5) 21.1(5) 17.6(5) 5.0(5)
4 8.6(5) 19.6(5) 17.0(5) 5.9(5) 6.2(5) 25.7(5) 20.0(5) 5.0(5)
8 9.2(5) 22.1(5) 18.2(5) 6.4(5) 6.3(5) 34.4(5) 23.9(5) 5.0(5)
16 9.0(5) 23.3(5) 19.3(5) 6.6(5) 6.4(5) 41.9(5) 27.9(5) 5.0(5)
32 11.0(5) 28.0(5) 18.1(5) 7.3(5) 6.6(5) 49.0(5) 32.8(5) 5.0(5)
64 20.2(5) 37.3(5) 19.2(5) 9.6(5) 6.5(5) 54.3(5) 31.1(5) 5.0(5)
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The simulated data come from y = Xβ + ε, where X ∼ Np(0p,Σp),
(Σjk = 0.5|j−k|) and ε ∼ N(0, 1). For two sample sizes (50, 200), two
different scenarios have been considered: in the first scenario (n > p),
p ∈ {.15n, .25n, . . . , .95n} and true coefficients β = (5, 4, 3, 2, 1, 0, . . . , 0)T.
In the second scenario, n < p, p ∈ {1n, 2n, . . . , 64n} and β as in the first
scenario.
Table 1 and 2 report average mean squared errors (MSE), average degrees
of freedom (df) and the number of correctly selected parameters. Results
show that the proposed method performs better than the others in all the
scenarios, not only in terms of model fit but also in terms of degrees of
freedom.
The proposed iterative algorithm always exhibits the lowest MSE, but when
n < p, particularly with small samples (n = 50), the new methods performs
largely better than the other competitors.

4 Conclusions

We have introduced a ‘new’ approach to select iteratively the tuning param-
eter λ of lasso regression. Limited simulation evidence suggests the method
attains comparatively better performance in all considered settings. Results
have been presented for the classical Gaussian model, but the proposed ap-
proach is favored to be employed in generalized linear models with binary
or count responses. Application in very high-dimensional settings (n� p)
that are today one of the most challenging concerns, represents a notewor-
thy point to be investigated.
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Abstract: In longitudinal studies individuals are measured repeatedly over a
period of time for a response variable of interest. In classical longitudinal models
the longitudinal observed process is considered independent of the times when
measurements are taken. However, in medical context it is common that patients
in worst health condition are more often observed, whereas patients under control
do not need to be seen so many times. Therefore, longitudinal models for data
with this characteristics should allow for an association between longitudinal
and time measurements processes. In this work we propose a joint model for
the distribution of longitudinal response and time measurement using likelihood
inference for the model parameters. A simulation study is conducted and the
model proposed is fitted to a data set on progression of oncological biomarkers
in breast cancer patients.

Keywords: longitudinal; follow-up times; biomarkers

1 Introduction

In longitudinal studies individuals are measured repeatedly over a period of
time. In unbalanced observational studies individuals have different number
of measurements assessed at different times. Usually, in medical context,
patients are observed for a response variable of interest up to doctors de-
cision rather then based on a predefined protocol. That is, patients are
usually measured according to their clinical condition. For example, when
monitoring for breast cancer progression, patients are repeatedly measured
for biomarkers CEA and CA15.3 based on their historical measurements.
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Therefore, in these cases the follow-up time process should be considered
dependent on the longitudinal outcome process.
The general linear model (Diggle et al. 2002) described for longitudinal data
analysis, assumes a deterministic follow-up time process that is noninfor-
mative about the outcome longitudinal response. In this work we propose
to joint model the longitudinal process and the follow-up time process con-
ditional on the historical unobserved longitudinal process.
Others have been proposed models for situations where the longitudinal re-
sponse variable and the time measurements are related. More lately, Fang
et al (2016) proposed a joint model for longitudinal and informative ob-
servation using two random effects with additive mixed effect model for
observation time. Cheng et al (2015) proposed a model where the prob-
ability structure of the observation time process is unspecified. Lipsitz et
al (2002) consider a model where assumptions regarding the time mea-
surements process result in the likelihood function separated in the two
components. Lin et al (2004) approach is base on missing data and pro-
posed a class of inverse intensity-of-visit process-weighted estimators in
marginal regression models. Fitzmaurice et al (2006) consider the same
problem when the longitudinal response is binary.
In this work we consider a response longitudinal variable with Gaussian dis-
tribution. We propose a model where the follow-up time process is stochas-
tic. The model is described through the joint distribution of the observed
process and the follow-up time process. Estimation of model parameters is
through maximum likelihood, where a Monte Carlo approximation is nec-
essary. We conducted a simulation study of longitudinal data where model
parameter estimates are compared, when using the model proposed and
ignoring the association between processes. Finally, the model proposed is
applied to a real data set on progression of oncological biomarkers in breast
cancer patients.

2 Model Proposal

Consider data observed for m individuals, where Yi is the vector of lon-
gitudinal responses and Ti is the vector of time measurements, both for
subject i = 1, ...,m. It is assumed a model for the joint distribution of
the longitudinal outcome process Y and the time measurement process T
through an unobserved stationary Guassian process W(·). Therefore, we
propose the following model

[Yi|W(Ti),Ti] ∼ Normal(µ+ W(tij), τ
2)

and intensity function for the time measurement process at time tij , j =
1, ..., ni

λ(Tij)|Whistory(s) ∼ exp {F(Whistory(tij))} ,
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where, µ is the expected value that can include regression parameters and
F(.) is any defined function. For example, to describe a time measurement
process dependent on the progression of the patients unobserved health
condition, we might define

λ(Tij)|Whistory(s) = exp

(
α+ γ

∫ tij

0

W (s)ds

)
.

Notice that, process W(·) is continuous in time, though only a discrete
version of it is observed at tij .,
For inference we consider a likelihood approach, where the likelihood func-
tion is

[Y,T] =

m∏
i=1

[Yi,Ti]

=

m∏
i=1

∫
W

[Yi|W][Ti|W][W]dW

=

m∏
i=1

EW|Yi

(
[Ti|W][Yi|W0]

[W0]

[W0|Yi]

)
where, W0 is the subset with observed time points and W1 is the subset
withunobserved time points.,
We then generate g samples from [W|Yi and approximate the expectation
by its Monte Carlo version

LMC(θ) =

m∏
i=1

1

g

g∑
j=1

(
f(Ti|Wj)f(Yi|W0j)

f(W0j)

f(W0j |Yi)

)

3 Results

A simulation study is conducted and results are presented when fitting the
model proposed and the general linear longitudinal model (Diggle et al,
2002).,
A data set on oncological biomarkers, CEA and CA15.3, for breast can-
cer patients is available from Hospital de Braga, Portugal. There are data
available on 550 patients, with a mean number of measurements per sub-
ject of 7.6 (median=7 and sd=4.1), with a total number of observations
for CEA of 4166 and 5166 for CA15.3. In Figure 1 longitudinal profiles of
CEA and CA15.3 (logarithm scale) of a random sample of 10 patients is
shown, with black dots representing the location of the time measurements
and the solid black line is the respective smooth spline for all data.
The proposed model is fitted to this data and results are compared with
the classical longitudinal model.
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FIGURE 1. Longitudinal profiles of a random sample of 10 patients measured
for CEA and CA15.3.
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Abstract: Probabilistic weather forecasts computed by numerically solving
physical equations describing atmospheric processes have systematic errors, par-
ticularly over complex terrain. Statistical post-processing is often applied to alle-
viate these errors. We will present a novel fully scalable full-distributional post-
processing method for precipitation, using high-resolution local anomalies to ac-
count for the high spatial variability. The application of the new method to the
central Alps improves the skill of forecasts for both the probability of occurrence
and the amount of precipitation.
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1 Introduction & Data

In mountainous regions, large amounts of precipitation can lead to se-
vere floods and land slides during spring and summer, and to dangerous
avalanche conditions during winter. An accurate and reliable knowledge
about the expected precipitation can therefore be crucial for strategical
planning and to raise awareness among the public.
Precipitation forecasts are typically provided by numerical weather predic-
tion (NWP) models using physical prognostic equations. Ensemble predic-
tion systems (EPS) provide several independent weather forecasts based
on slightly different initial conditions to depict the forecast uncertainty. A
crucial limitation of these forecasts is the horizontal resolution. Therefore
several approaches to correct the NWP forecasts for unresolved features
and systematic errors are available, known as post-processing methods.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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We present a novel spatial post-processing method for precipitation over
complex terrain using high-resolution spatial climatologies as background
information, and apply it to Tyrol, Austria. Due to the local alpine topog-
raphy, observations vary strongly across the domain, increasing the com-
plexity for spatial modelling. The new approach uses high-resolution cli-
matologies to remove local features from (i) the observations and also from
(ii) EPS forecasts. The remaining short-term derivations can be used to
create high-resolution spatial corrected EPS forecasts.
We use an ensemble consisting of 50 forecasts computed by the EPS of
the European Center for Medium-Range Weather Forecasts (ECMWF).
The horizontal mesh of the current model is roughly 32 km (see Figure 1,
left). Approximately 2200 single days (2010–2015) are used, including 90
grid points from the EPS model covering the area of interest. Precipitation
observations at 117 stations cover the period 1971–2013 and constitute
roughly 1.5 million unique observations.

2 Censored Spatio-Temporal Anomaly Model

Ensemble model output statistics (EMOS; Gneiting et al., 2005) model the
statistical relationship between past observations and the corresponding
EPS forecasts. As the EPS provides 50 individual forecasts, the corrections
can be accounted to both, the expected mean, and the uncertainty of the
EPS, typically represented by the EPS standard deviation.

y ∼ N
(
µ, σ

)
with: µ = β0 + β1m(eps), σ = γ0 + γ1s(eps) (1)

Gneiting et al. (2005) proposed that the response y is assumed to follow
a normal distribution with location µ represented by a linear function of
the EPS mean (m(eps)), and standard deviation σ represented by a linear
function of the EPS standard deviation (s(eps)).
However, for the application of high-resolution precipitation post-processing
on a daily time scale, two major problems arise. Daily sums of observed
precipitation are no longer normally distributed, as they contain a large
fraction of zero-observations (dry days), and the observations show a large
variability across the area of interest – especially over complex terrain like
e.g., the Alps.
To account for the distribution of the observations, the conditional response
distribution in Equation 1 has to be modified first. Messner et al. (2014)
showed that the response distribution of precipitation can be seen as left-
censored normal, as precipitation is physically limited to 0 mm.
Furthermore, a way has to be found to include the information of all avail-
able stations within the area of interest, but to account for the different lo-
cation and season dependent characteristics across the domain at the same
time. Therefore we are using the concept of local standardised anomalies,
based on high-resolution precipitation climatologies. Both, the observations
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and all 50 individual EPS forecast members, will therefore be standardised
using:

y∗ =
y − µy,clim
σy,clim

(2)

While the climatological location µy,clim and scale σy,clim represent the
long-term spatio-temporal patterns in both, the observations and the in-
dividual EPS forecast members respectively (y), anomalies are the short-
term deviations from the underlying climatology. By removing location and
season dependent characteristics, the observations and the EPS forecasts
can be brought to a compareable level, what will be called “standardised
anomalies”, denoted by superscript “∗”.
We are using a Bayesian framework estimating generalized additive models
for the climatologies (R package bamlss, Umlauf et al., 2016) to estimate
heteroscedastic spatio-temporal climatologies of the observations, and the
EPS forecasts. Therefore, similar assumptions to Equation 1 will are used,
replacing the linear predictors for µ, and log(σ) by (Stauffer et al., 2015):

β0 + β1alt + s(yday) + s(lon, lat) + s(yday, lon, lat) (3)

The linear predictor includes a linear altitudinal, a cyclic seasonal (s(yday)),
a 2-D spatial (s(lon, lat)), and a 3-D effect (s(yday, lon, lat)) to account
for changes in the seasonal pattern across the area of interest. Once the
climatologies are known, the statistical relationship between standardised
anomalies of the observations, and the standardised anomalies of the EPS
forecasts can be modelled similar to the EMOS approach in Equation 1
using:

y∗ ∼ N
(
µ, σ

)
with: µ = β0+β1m(eps∗), log(σ) = γ0+γ1 log(s(eps∗)) (4)

As the standardised anomalies are no more location dependent, the predic-
tion for any location within the area of interest can be made. This allows
for a spatial correction of any future EPS forecast on an arbitrary fine
horizontal resolution.

3 Summary

The novel approach for precipitation using anomalies provides an attrac-
tive and reliable new method for spatial ensemble post-processing. Once
the climatologies are estimated, the computational costs are very low. Re-
garding the full probabilistic response, several quantities can be derived
from one single model, like the expected amount of precipitation, quan-
tiles, or probabilities. Figure 1 shows spatial sample prediction on a 800 m
grid for a +30 h forecast, comparing the raw EPS mean (left) against the
corrected forecasts (middle). In contrast to the EPS, several topographical
features can be identified after the correction. Beside, probabilities for ex-
ceeding two different thresholds are plotted. First results have shown that
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the novel approach applied to the area of Tyrol, located in the Eastern
Alps, increases the forecast skill for both, the probabilities of exceeding a
certain threshold, and the amount of precipitation.
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FIGURE 1. Sample predictions. Top: 2012-04-02, bottom: 2012-11-30. Left to
right: raw uncorrected EPS forecast [mm d−1], corrected forecast [mm d−1], and
probability of occurrence. Top > 0 mm d−1, bottom > 10 mm d−1. The color
scale for the uncorrected and corrected forecast is identical for each individual
day.
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1 Introduction

A relationship between life events and physical illness has been recognised
[Cooper and Payne, 1991]. Information about the associations between par-
ticular types of cancer and particular types of life events, which are in effect
particular types of life stresses, is sparse and in many cases conflicting [Chen
et al. 1995]. Some of this conflict may be attributed to differe bnces in study
design characteristics and the controlling of confounding factors. The pur-
pose of a recent random-effects meta-analysis by Duijts et al. [2003] was to
identify studies that examined the association between adverse events and
the risk of breast cancer and were published to establish the relationship
for various types of life events. A group of life events assessed was those
associated with financial status changes, which produced an overall non-
statistically significant association with breast cancer risk [Roberts et al.
1996] (SOR=0.90, 95% CI: 0.54-1.50). The studies, however, differed sub-
stantially in terms of study design, location, time frame and sample size. It

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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is of interest to pool information from various studies, in order to identify
characteristics that differentiate study results.
A random-effects Bayesian meta-analysis model is conducted to combine
the reported estimates of the four studies described that assess the rela-
tionship between life events related to financial status. The proposed model
allows three major sources of variation to be taken into account. These in-
clude study level characteristics, between study variance and within study
variance. The sensitivity of the overall results to various study character-
istics is also investigated.

2 Methods

A summary of study-specific characteristics of the studies considered for the
meta-analysis is provided in Tables 1 and 2. The study-specific estimates
of the association between breast cancer and life events related to financial
status are presented in Table 3.
The study characteristics that were considered under Model 2 were as fol-
lows: C1: Study design: case control or cohort; C2: Study location: USA
or UK; C3: Correction for confounding: yes or no. Thus for each of these
three situations, each true study-specific log odds ratio arises from one of
two subgroups with subgroup mean log odds ratio.

TABLE 1. Description of studies considered for the meta-analysis.

StudyAuthor Time
frame

Year of
Publica-
tion

Country Design Exposition

1 Roberts 5 years 1996 USA Retrospective
case-control

Questionnaire

2 Cooper 2 years 1989 UK Prospective
case-control

Questionnaire

3 Cooper 2 years 1993 UK Limited
Prospective
cohort

Questionnaire

4 Snell 5 years 1971 USA Retrospective
case-control

Interview

Independence is assumed between studies with this model, so that the pre-
cision matrices are all diagonal. The prior precision matrices are defined to
have diagonal entries equal to one, reflecting little information and there-
fore strong uncertainty about between-study variation.
Bayesian analysis involves integration over potentially high dimensional
probability distributions of model parameters to enable inferences about
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TABLE 2. Description of studies considered for the meta-analysis (continued).

StudyNumber of
cases

Source of
cases

Age of cases Number
of
Con-
trols

Source of Co-
hort

Correction
for con-
founding

1 258 Population 64.8 614 Population Yes
2 171 Suspicion 55 1992 Hospital Yes
3 171 Suspicion 55 727 Suspicion Yes
4 352 Hospital 55.5 670 Hospital No

model parameters [Fryback et al. 2001]. MCMC may be used instead to
draws samples from the required distributions and then form sample av-
erages to approximate expectations. The analyses was undertaken in Win-
BUGS [Speigelhalter et al. 2000], with a burn-in of 100,000 iterations which
are excluded, and a collection period of 100,000 iterations to estimate the
odds of developing breast cancer as a result of having experienced life events
related to financial status; and initial values were set at the maximum like-
lihood values. These were more than sufficient to confirm convergence, as
indicated by the diagnostics within WinBUGS.

TABLE 3. Study-specific estimates used in the Meta-analysis.

StudyOdds Ratio 95%CI Log odds ra-
tio

Precision

1 0.96 0.66-1.41 -0.0408 27.77
2 0.65 0.44-0.96 -0.4308 26.29
3 0.59 0.41-0.85 -0.5276 30.10
4 1.73 1.26-2.36 0.5481 40.63

Summaries of the posterior distributions were assessed graphically using
kernel density plots and are presented numerically by calculating summary
statistics such as the mean, variance and quantiles of the sample. Win-
BUGS trace and history functions offer serial plots of the actual sequence
of simulated values to diagnose convergence. The full empirical distribution
function is used for hypothesis testing.

3 Results

The model was employed to inspect the impact of various study design char-
acteristics that differed between the four studies. Trace plots and posterior
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FIGURE 1. Model

density plots for the model parameters were inspected for stability and con-
formity to the anticipated distributions. In all cases, these characteristics
were confirmed. Estimates of the posterior mean, standard deviation and
95% credible interval for θ, ξ, µ, under each of the three alternatives C1,
C2, C3 are given in Table 4. These results suggest that the overall odds
ratio from the three case control studies is greater than unity and that
from the cohort study is less than unity, although both estimates have 95%
credible intervals that span unity. Similarly, those studies conducted in the
USA have an overall odds ratio that is greater than unity whereas those
conducted in the UK have an overall odds ratio that is less than unity,
but again the two credible intervals both include unity. Finally, the overall
odds ratio for the three studies that controlled for confounding is greater
than unity compared to a reduced odds ratio for the study that did not
control for such issues. The overall odds ratios for the three analyses are
not substantially different in light of the very wide credible intervals which
are a consequence of the disparate study estimates and vague priors.

4 Discussion

By allowing for differences in study design the present analysis supports
the findings from the study by Duijts et al. [2003], where it was concluded
that life events related to changes in financial status are not statistically
significantly related to breast cancer. The disparate nature of the results
from these four studies may arise because of differences in study design,
location, method of analysis, among other factors. These differences can be
acknowledged and explored through the addition of hierarchies to the meta-
analysis model, as in the model presented. Because of the small number of
studies, the analyses under this model are intended to be indicative rather
than substantive.
Unfortunately, there is insufficient information to further investigate these
suggested differences in odds ratios associated with different study design
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TABLE 4. Summaty statistics for the posterior mean log odds ratios Sand µ 

Lo odds ratio Mean SD. Z.5% 97.5% 
Cl: .i\ccounting for stndy 
design; case control (~ or 
cohort(~ 

Bl --0.0362 0.1889 -0.4061 0.3372 
8! -0.3936 0.1955 -0.7777 --0.0085 
a, -0.5155 0.1846 -0.8787 -0.1516 
a. 0.5178 0.1588 0.2031 0.8283 
~ 0.0140 0.4504 -0.8937 0.9118 
~ -0.3227 0.6616 -1.631 1.009 
µ. -0.0527 0.4981 -1.178 0.9288 

I Cl: Accounting for stndy 
location; US\ (~or UK(~ 

6i -0.0189 0.1899 --0.3903 0.3580 
8! -0.4239 0.1937 -0.8083 --0.0445 
Bl -0.5156 0.1817 -0.8733 --0.1578 
a. 0.5251 0.1581 -0.2121 0.8346 
~ 0.1816 0.4945 -0.8233 1.1550 
~ -0.3544 0.5023 -1.3260 0.6784 
µ. -0.0285 0.4775 -1.078 0.9382 

I Cl: Accounting for whether the study adjusted for confounding: 
Yes (~i) or No(~ 

Bl --0.01224 0.1897 -0.3837 0.3636 
8.? -0.4265 0.194 -0.8088 -0.0438 
a, -0.5156 0.1819 -0.8741 --0.1576 
a. 0.5181 0.1575 0.2051 0.8267 
~ 0.2697 0.4403 -0.63 13 1.133 
~ -0.3445 0.5125 -1.333 0.7137 
µ. -0.0107 0.4721 -1.021 0.9700 

characteristics, or to identify whether there are interactions between these
study characteristics. However, the analyses do serve to demonstrate the
application of a random-effects Bayesian meta-analysis model by combining
results from studies while accommodating partial exchangeability between
studies, acknowledging that some studies are more similar due to common
designs, locations and so on. The ease in with which additional hierarchical
levels between study-specific parameters and the overall distribution can
be incorporated in the Bayesian framework is also demonstrated.
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1 Introduction

We consider methods for modelling experimental data collected in the lab
concerning rock failure. Accelerating rates of foreshocks are often observed
precursory to natural hazards such as earthquakes and volcanic eruptions.
Similarly, rock failure in laboratory experiments is preceded by accelerating
strain rates. In this work we investigate the usage of a damage mechanics
model proposed by Main (2000) for the analysis of strain and strain rate
data during the tertiary phase of brittle creep. The model studied consists
of 3 parameters, of which we focus on the failure time and on the power-law
exponent. When examining the likelihood function and the Fisher Informa-
tion we find that there is substantial correlation between these parameters.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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2 Model

Main (2000) develops a damage mechanics model to explain the time-
dependent, trimodal behaviour of brittle creep. We consider modelling the
strain using a relationship of the form

Ω = ΩI(1 +
t

mτ1
)m + ΩIII(1−

t

tf
)−v,

where for time t, Ω is the strain. The parameters are ΩI , ΩIII , m, τ1, v
and tf . There is also interest in modelling strain rate Ω̇, the derivative of
Ω with respect to time t. Here we focus on the accelerating crack growth
which is associated with the second term on the right-hand-side of the
above equation as it illustrates the complexities of modelling the data, i.e.
a strain model of the form

Ω = ω(1− t

tf
)−v, (1)

where tf represents the time of failure which is of particular interest, while
the exponent parameter v relates to the curvature of the strain relationship.

3 Estimation

We assume for the moment that the strain observations are subject to iid
experimental errors with variance σ2, and the expectation at time t has
the form given in (1) which leads to a nonlinear model (Bates and Watts,
1988; Fahrmeir et al., 2013).
We apply a nonlinear least squares estimation procedure to fit the model
with parameters v and ω for given tf to the strain data (Heap et al. (2009)
gives details of lab experiments). This seems to be an effective numerical
approach for parameter estimation. Models were fitted for failure times tf
over a suitable range of values and the best model selected; this corre-
sponded to tf = 138.864. Table 1 presents the estimates of the fitted model
with this particular failure time value.

TABLE 1. Estimation of v and ω from strain for tf = 138.864.

Parameter Estimate Std. Error

v 2.147×10−2 4.104×10−5

ω 1.741 1.143×10−4

σ 0.001628

The fitted model and residuals are given in Figure 1. Looking at the left
panel we can see that the fitted model appears to represent the experimental
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data well, but the residuals show some concerning departures from the
assumed model. Firstly there are multiple small waves with a length of
about ten minutes, and secondly there are two irregular large waves, which
indicate a more severe discrepancy between the fitted values and the data. A
partial autocorrelation analysis of the residuals suggests that residuals are
autocorrelated, which may possibly be due to the nature of the experiment.
Therefore, we expect the estimates to be reliable, but the SEs may be
misleading.

80 90 100 110 120 130

1.
78

1.
80

1.
82

1.
84

1.
86

1.
88

Strain data and fitted regression line

Time

S
tr
ai
n

80 90 100 110 120 130

−
0.
00
4

−
0.
00
2

0.
00
0

0.
00
2

0.
00
4

Residuals for strain model 

Time

S
tr
ai
n

Figure 5.6: Fitted regression line and residuals for the estimation from real strain data.
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rameter regions for nonlinear regression models:

S(θ) < S(θ̂)(1 +
p

n− p
F (p, n− p, α)) (5.1)

S(θ) denotes the residual sum of squares, n is the number of observations and p is the

number of parameters in the model. For large samples of normal distributed random

variables, confidence regions obtained by this method are approximately equivalent to

likelihood ratio based confidence regions (see Appendix B).

−2(l(θ)− l(θ̂)) =
1

σ̂2
(S(θ)− S(θ̂)) < χ2

p(α) (5.2)

To illustrate the confidence regions graphically, we again evaluate the log-likelihood func-

tion and the residual sum of squares over a 3-dimensional grid in proximity to the maxi-

mum likelihood estimator. We extract the sets of parameters, for which the likelihood-ratio

statistic or the residual sums of squares are below the required critical value. The approx-

imate confidence regions for v and tf are created by projecting these sets onto the tf -v

51

FIGURE 1. Fitted regression line with strain observations (left) and residuals
(right) for the estimation from the experimental lab data.

The estimated parameters (obtained by minimising RSS over a range of tf
values, with argmin(tf ) = 143.37) are given in Table 2 for the strain rate
data, and the fitted model is shown in Figure 2, with the residuals. The
estimates for the strain and the strain rate produce very similar fits when
viewed on the strain scale. However, the SEs for the strain rate would
appear to be more reliable. On investigating the differences between the
parameters estimated by the two models, the tf over which the RSS was
minimised is not very well determined as the RSS does not vary greatly over
a range of tf -models. Also, the parameter estimators are highly correlated
so changes in tf lead to changes in the other two parameters. Nevertheless,
the strain and strain rate models provide a useful representation of the
experimental data.

TABLE 2. Estimation of v and ω′ (the constant multiplicative parameter from
Ω̇ model) from strain rate for tf = 143.37.

Parameter Estimate Std. Error

v 0.25634 0.05680
ω′ 0.13246 0.04688
σ 0.002479
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Estimate Std. Error t value Pr(>|t|)
v 0.25634 0.05680 4.513 7.05e-06
ω 0.13246 0.04688 2.825 0.00481
σ 0.002479

Table 5.2: Estimation of v and ω from the strain rate for tf = 143.3707

The fitted regression line and the residuals can be seen in Figure 5.13. The residuals occur

to be more random than the residuals of the fitted model for strain. However, they are

not free of a pattern alike, as they manifest the discrete nature of the rate data.
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Figure 5.13: Fitted regression line and residuals for the estimation from real rate data.

Moreover partial autocorrelation is also present among the residuals of the strain rate,

although the problem is not as severe as in the case of strain. There is a comparatively

strong negative autocorrelation at a lag of one, and positive autocorrelation at lags between

10 and 15.

The 99% and 95% confidence regions for v and tf are shown in Figure 5.15. In the plot on

the right-hand side ω is unknown and the confidence regions were created by the projection

of a 3-dimensional set onto a plane of v and tf . On the left-hand side ω is treated as fixed

constant of the size of the maximum likelihood estimator. Compared with the estimations

from strain, the estimation from the strain rate leads to much larger confidence regions.

The 99 % confidence interval for tf under the assumption of unknown ω spans from 139.9

to over 148. For v the interval is even less precise. Even if we assume that ω is fixed,

the resulting confidence region is larger than the confidence region given three unknown

parameters for strain.
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FIGURE 2. Fitted regression line with strain rate observations (left) and resid-
uals (right) for the estimation from the experimental lab data.

4 Discussion

In this paper we have considered the application of nonlinear models for
analysis of experimental rock failure data during the tertiary phase of brit-
tle creep. These 3-parameter models have been used to explore different
features of the data and highlight some of the challenges of analysing such
data. In future work, where lab experiments are repeated under identical
conditions, it is expected that the use of replication will enable the features
we have seen to be investigated more fully, and provide further insights into
the processes related to natural hazards such as earthquakes and volcanic
eruptions.
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Abstract: Haemodialysis and peritoneal dialysis patients survival was com-
pared using marginal structural models or time-dependant covariates Cox model,
through a large observational study. Adjustment variables were selected by di-
rected acyclic graphs or backward procedure.
Among a total of 13,767 patients with 7,181 events (52%), 1,748 (13%) have
originally a peritoneal dialysis and 19,019 (87%) have a haemodialysis. The time-
dependant covariates Cox model with the DAG based method covariates selection
found a death hazard ratio of 0.65 [0.59 ; 0.71] in favor of haemodialysis. Marginal
structural models with same adjustment found a hazard ratio of 0.82 [0.69 ; 0.97].
Similar results were found with backward procedure.
Marginal structural models differ from Cox model in considering clinical charac-
teristics by using weights. A benefit of the graphical method is to allow for the
representation of prior clinical knowledge on a given situation (including unob-
served variables) and to have an overview of the causal paths.

Keywords: Observational study; Causality; Directed acyclic graphs; Marginal
structural model; Survival

1 Introduction

The choice of dialysis modality, haemodialysis (HD) or peritoneal dialysis
(PD), has become an important decision that affects patients quality of
life and survival. There are conflicting research results about the survival

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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differences between HD and PD. Because a lot of factors act together on
causal relations, epidemiologists face very complex situations and describe
causes of disease in a multifactorial framework. Much of the data used for
causal claims do not come from experiments such as clinical trials and one
of the most important issue is then whether it is possible to make warranted
causal claims using non-experimental, observational data. This requires an
examination of ”causal criteria” but a more sophisticated reasoning about
causality (an event C causes an event E) is also needed.

We are in a situation of time-dependant covariates (patients can change
of dialysis modality), resulting confounding bias. Appropriate Cox model
could be used but in this example it seems that inverse probability weight-
ing and marginal structural models are better analytic tools to be used to
avoid the bias that can occur with standard adjustment of a time varying
confounder affected by prior exposure. Then still remains the problem of
adjustment covariates choice. The most used methods are stepwise proce-
dures but because they may introduce biases by themselves, like collider
bias or confounding bias (Greenland, 2003), alternative methods have been
suggested, as directed acyclic graphs (DAGs).

The aim of the study is to compare the survival of patients in haemodialy-
sis and patients in peritoneal dialysis in a large national cohort of incident
dialysis patients. We used a directed acyclic graph to select adjustment
variables and marginal structural models to account for transplant censor-
ship, modality change over time and time varying covariates.

2 Materials and methods

Data came from REIN (Réseau Épidémiologie et Information en Néphrologie),
a national register of patients with end stage renal disease in France. Patho-
logical conditions (associated heart disease, diabetes, . . . ), laboratory tests
and medications are annually collected. For this survival study, we selected
patients who started a dialysis between 2006 and 2008 with no emergency
and gathered their annual follow up until December 31, 2013.

For dealing with multicausality, several models have been suggested. Marginal
structural models (MSM, Robins et al, 2000) rely on the counterfactual
approach. Causality is then defined by comparing the observed event and
the counterfactual event that would have been observed if contrary to the
fact, the subject had received a different exposure than the one he actually
received. MSM have been also developed to address the issue of time vary-
ing confounding (Hernan et al, 2000), using the inverse probability weights
(IPWs). IPWs are estimated by combining the inverse probability of ”treat-
ment” (here dialysis modality) weights (IPTWs) and the inverse probabil-
ity of censoring weights (IPCWs). The IPTW (or IPCW) are computed as
the ratio of the estimated probabilities of treatment (or censoring) using
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baseline covariates only and of the estimated probabilities of treatment (or
censoring) using baseline and time-dependant covariates. For example, at

time t, the IPTW for subject i is
∏
s6t

P (Ts|E)

P (Ts|E,Ls−1)
, where (without a

strong specification) Ts is the treatment at time s, E are baseline covariates
and Ls−1 are time-dependant covariates, observed at the time s− 1.

Because it is possible to represent causal relation by graph (two vertices
and an oriented edge), DAGs are visual representations of the pre-supposed
causal relationships between variables, including exposure covariates, out-
come, potential confounding variables and also latent variables. Shrier and
Platt (2008) described a set of rules based on the created DAG to decide
which variables must be controlled in the statistical analysis in order to
remove confounding.

With respect to our main goal, we compared four models on survival data,
where the treatment under interest was the dialysis modality and an addi-
tional censor event was kidney transplant. The models compared, all deal-
ing with time-dependant covariates, were Cox regressions with or without
the use of IPWs, using for selection of covariates a backward procedure or
a DAG-based method.

3 Results

Among a total of 13,767 patients, 1,748 or 13% had originally a PD and
19,019, or 87%, had a HD. A quarter of PD patients switched to HD whereas
1% switched from HD to PD. At baseline, patients in HD and PD differed
on several characteristics (age, diabetes, heart failure . . . ).

Five adjustment covariates were selected with a backward procedure: age,
cancer, estimated glomerular filtration rate, heart failure and chronic respi-
ratory failure. With the DAG-based method 7 more covariates were added:
transplant waiting list, stroke, kind of nephropathy, smoker, peripheral
vascular disease, handicap, cirrhosis. Results of four models using or not
weights and graphical method are summarized on Table 1.

TABLE 1. Estimated hazard ratio (HR) for dialysis modality (PD as reference)

Models Adjustment method HR [CI95%] AIC*

Cox model Backward procedure 0.64 [0.59 ; 0.70] 61,974
DAG-based method 0.65 [0.59 ; 0.71] 61,463

MSM Backward procedure 0.80 [0.68 ; 0.94] 65,244
DAG-based method 0.82 [0.69 ; 0.97] 64,682

*Akäıke Information Criterion
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4 Discussion

In our study the four models lead to the same conclusion: haemodialysis was
associated with a better survival. The use of MSM with inverse probability
weighting reduces nevertheless the findings of the time-dependant survival
analysis. The proportional hazard ratio was 0.2 point higher, which is clin-
ically non-negligible. This result is connected with the fact that marginal
structural models consider clinical characteristics of dialysis patients across
weights.

Although both methods of covariates selection gave similar estimates of
hazard ratio, the benefit of the graphical method is to allow for the rep-
resentation of prior clinical knowledge on a given situation (including un-
observed variables) and to have an overview of the causal paths clinically
defined. However graphical method increased the number of covariates used
for adjustment on confounders, which can be an issue in large cohort studies
using data from registers that do not always gather all the needed variables.

In addition, to avoid the problem of competing risks due to renal trans-
plantation, we considered a second source of weights which is the inverse
probability of censoring, as well as the inverse probability of treatment. A
future work will be the comparison with multi-states models which also
deal with competing risks. The study of models including interactions be-
tween main effects could also be explored, in order to take into account
different treatment effects across subgroups (e.g. age).
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Abstract: Partial ranking data arise when the number of items is too large
for the rankers to rank all the items. Several models for this kind of data have
been proposed, including the Plackett-Luce (PL) model. An extensions of the
PL model, termed the Rank-Ordered Logit (ROL) model allows covariates to be
incorporated. A different extensions of the PL model, the Benter model, allows
preferences for higher-ranked items to be stronger than preferences for lower-
ranked items. Here we combine these two extension of the PL model to give
a model that incorporates covariates and also allows for a dampening effect.
We adapt the minorization-maximization (MM) algorithm that was proposed by
Gormley and Murphy (2008) for fitting the Benter model.

Keywords: Partial Ranking; Plackett-Luce Model; Rank-ordered Logit Model;
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1 Introduction

Ranking data, in which rankers are asked to express their preferences among
a set of items, arise in many fields (Alvo 2014). In the simplest case, each
ranker is asked to rank each item, leading to a complete ranking. When
the number of items is too large for rankers to provide a reliable complete
ranking, they can instead be asked to rank a subset of the items. This is
called a partial ranking.
Several models for partial ranking data have been proposed in the literature
(Marden 1995, Alvo 2014). One model for complete rankings that adapts
readily to partial ranking data is the Plackett-Luce (PL) model (Marden
1995). The Rank-Ordered Logit (ROL) model is an extension of the PL
model which can incorporate covariates (Alvo and Yu 2014). A different
type of extension of the PL model is the Benter model (Benter 1994). The

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
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Benter model introduces additional parameters, termed damping param-
eters, into the basic PL model, which allow preferences for higher-ranked
items to be stronger than preferences for lower-ranked items. In our work,
the two extensions of the PL model are combined to give a model that
incorporates covariates and also allows for a dampening effect.
To illustrate the methodology, we use a set of partial rankings of pictures of
animal species. In a survey carried out at the Durrell Institute for Conser-
vation Ecology at the University of Kent, participants were asked to rank
random samples of 10 species from a total of approximately 100 species,
according to how appealing they were.

2 Models for Ranking Data

Suppose there are k items to be ranked and n individuals who are doing
the ranking, where k may be large so that not all items are ranked by
all rankers. Let pi denote the number of items ranked by ranker i and let
ρi = (ρi1, . . . , ρipi) be the ranking where ρi1 is the item ranked first, ρi2 is
the item ranked second, etc.

2.1 Plackett-Luce Model

The Plackett-Luce (PL) model (Plackett 1975) is a very popular parametric
model of ranking data. The items are ranked from best to worst and the
rankings by different rankers are assumed independent. The PL model has
a vector of parameters (λ1, . . . , λk), where λj is a measure of the preference
for item j. Writing µρij = exp

(
λρij

)
, the PL model specifies the probability

of the ranking ρi as

P (ρi;λ) =
µρi1

µρi1 + · · ·+ µρipi
× · · · ×

µρipi−1

µρipi−1
+ · · ·+ µρipi

×
µρipi
µρipi

.

2.2 Rank-Ordered Logit model

The Rank-Ordered Logit (ROL) model is an extension of the PL model that
can incorporate covariates. There are three kinds of covariates describing
item characteristics, ranker characteristics, and ranker-item characteristics
(Alvo and Yu 2014). Let µρij be the corresponding ROL parameter then
the general form of the model is

µρij = exp

(
λρij +

L∑
l=1

βlzl,ρij +

R∑
r=1

γr,ρijxr,i +

Q∑
q=1

θqwq,iρij

)
,

where zl,ρij is a covariate that depends on the item ρij and βl is an item-
specific parameter; xr,i is a covariate relating to the rankers but does not
vary over items and the coefficient γr,ρij is a ranker-specific parameter; and
finally, wq,iρij is a covariate that describes a relation between item ρij and
ranker i and θq is a ranker-item specific parameter.
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2.3 Benter Model

Benter (1994) introduced another extension of the PL model by adding a
set of damping parameters (αj). In the Benter model, the probability of
the ranking ρi is

P (ρi;λ) =
µα1
ρi1

µα1
ρi1 + · · ·+ µα1

ρipi

× · · · ×
µ
αpi−1
ρipi−1

µ
αpi−1
ρipi−1

+ µ
αpi−1
ρipi

× µ
αpi
ρipi

µ
αpi
ρipi

,

where µρij = exp
(
λρij

)
. The Benter model is characterized by the param-

eters αj and assumes that 0 ≤ αj ≤ 1 for all j = 1, . . . , pi. This ensures
that preferences for lower ranked items are at least as random as higher
preference ones. In order to avoid over-parametrization problems, α1 and
αpi are defined to be equal to 1 and 0, respectively.

3 Statistical Analysis

Our investigation is motivated by a real data set coming from an internet
survey to assess the appeal of pictures of different animal species. This
survey divided the species into four groups. We consider only one group
which contains 97 species of animal and there are 450 participants. We
included ranker-item-specific covariates (Familiarity and Start Position)
and ranker-specific covariate (Gender) into ROL and Benter models. The
models were fitted by maximum likelihood and likelihood ratio tests were
applied to compare models when adding one covariate at a time.

TABLE 1. Likelihood ratio statistics when adding Familiarity, Start Position,
and Gender to ROL and Benter models (p-value in brackets).

Covariate ROL Benter ROL vs Benter

None - - 109.43(0.00)
+ Familiarity 91.81(0.00) 112.91(0.00) 130.53(0.00)
+ Start Position 19.43(0.00) 13.18(0.00) 124.28(0.00)
+ Gender 118.00(0.06) 100.25(0.36) 106.41(0.00)

Table 1 shows that the Familiarity and Start Position are strongly signifi-
cant, but Gender is not significant at 5% level when Familiarity and Start
Position are already in the model. Moreover, the Benter model performs
better than the ROL model which means that adding the dampening pa-
rameters to the model can improve performance.
The estimated α parameters are shown in Figure 1. The parameters are
generally decreasing with rank, suggesting that the rankers ranked their
top preferences more carefully their lower preferences.
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FIGURE 1. Comparing the α parameters from the Benter model.

4 Conclusion

We find that both extensions of the PL model result in significant improve-
ments in fit to the observed partial rankings. In the extended model, the
most significant covariates relate to the order in which the species were
presented to the ranker and whether the species was familiar to the ranker.
The damping parameters of the Benter model indicate that preferences
become less strong as one moves down the ranking order.
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Abstract: We investigate drug-likeness by considering the relationships between
surrogate measures of drug-likeness (solubility, permeability) and structural prop-
erties (lipophilicity (log P), molecular weight (MW)). We study the pair-wise
association between categorised variants of the traditional parameters of Lipin-
skis rule of five (Ro5), namely MW and log P, and an additional parameter,
polar surface area (PSA), introduced by Veber et al., (2002) across strata, where
strata are defined by a molecule’s druggable versus non-druggable (Ro5 compli-
ant vs violation) status. Zafar, et al. (2013) earlier showed that logP’s association
with MW changed sign from significantly negative to positive for nondruggable
vs druggable strata, becoming lower (positive) for nondruggable vs druggable.
These findings support recent criticisms about using log P (Bhal et al., 2007).
This study explores further the pairwise relationships of log P in comparison
with log D, a distribution coefficient, and shows that log D does not swap sign
nor magnitude in its relationship with MW; thereby it is a better lipophicility
measure. We use the Beh-Davy non-iterative (BDNI) direct estimation approach
(Beh and Davy, 2004; Zafar et al., 2015) to estimate the linear-by-linear associ-
ation of the pairwise relationships, within the framework of well-known ordinal
log-linear models (OLLMs). We also provide correspondence analysis (CA) plots
for comparing the pairwise associations of logP and log D with MW.

Keywords: Linear-by-linear association, ordinal log-linear model, log D
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1 Introduction

Assessing drug-likeness depends on the nature of relationships between sur-
rogate measures of physiochemical properties (aqueous solubility, perme-
ability) and structural properties (lipophilicity, molecular weight (MW)).
Lipophilicity, quantified as the partition coefficient, log P, is the most pop-
ular predictor for permeation as it influences drug potency and absorption,
distribution, metabolism and excretion (ADME) properties. Lipophicility
is also described by log D, a distribution coefficient, describing the ratio
of sum of concentrations of all compound forms (ionised and un-ionised).
Bhal et al. (2007) suggested that log P often fails to take into account vari-
ation in lipophilicity of a drug and proposed log D, as a better lipophilicity
descriptor. Zafar, et al. (2013) recently showed that log Ps association with
MW, optimally assumed positive, changed sign from significantly nega-
tive to positive for nondruggable vs druggable strata, and became lower
(positive) for nondruggable vs druggable molecules. In this study, we test
Lipinskis rule of five (Ro5) (Lipinski and Hopkins, 2004). Our aim is to
conduct a comparison of log P and log D, that is, to identify whether dif-
ferences in magnitude or sign change of the pairwise associations occurs
across strata (strata defined by a molecules druggable (Ro5 compliant)
versus non-druggable (Ro5 violation) status) by using the non-iterative di-
rect estimation approach (Beh and Davy, 2004) to estimate the association
for pairwise relationships within the framework of the ordinal log-linear
models (OLLMs).

2 Mathematical methods

For a doubly ordered I × J table, N , denote the proportion in the (i, j)th
cell as pij = nij/n where nij is (i, j) th cell value of N , for i = 1, 2, . . . .I ,
and j = 1, 2, . . . ..J . Denote pi. and p.j as fixed marginal proportion of ith
row and jth column, respectively. Let mij be the expected cell frequency
of (i, j)th cell. The OLLM is then defined as

lnmij =µ+αi+βj+φ(ui−u)(vj−v). (1)

Here, ui and vj are row and column scores, respectively. Set ui = i and
vj = j. µ is grand mean, αi and βj are ith row and j th column effects,
respectively. The parameter of interest in this model is the linear–by-linear
association parameter, φ. The BDNI estimator is

φ̂BDNI=
1

σ2
Iσ

2
J

I∑
i=1

J∑
j=1

pij (ui−u) (vj−v). (2)

Zafar et al. (2015) recently explored the bias, consistency, variance and
relative efficiency of the BDNI estimator by comparing to the Cramer-Rao
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lower bound and showed that the BDNI estimator is a Minimum Variance
Unbiased (MVU) estimator of the linear-by-linear association parameter,
under independence. For visual interpretation of the association between
ordered row and ordered column categories, a CA plot is constructed.

3 Data and Design

In this study the data of Hudson et al. (2012), namely, 1,279 small molecules
from the DrugBank3.0 database (Knox et al., 2011) are analysed. We eval-
uate the relationships between bivariate pairs of categorised variants of 2 of
the 4 traditional parameters of Ro5, namely MW and logP, an additional
parameter, polar surface area (PSA) (Veber et al., 2002). Four levels of
categorized variables are generated by making quartiles within the given
druggability stratum (levels 1, 2, 3) and the first category (0) is defined
to satisfy the new molecular cutpoints (criteria) determined by Hudson et
al.,(2012).

4 Results and Conclusion

Table 1 gives BDNI estimates (95 % CIs) and corresponding linear-by-linear
CA estimates for the Ro5 based druggability strata. All BDNI estimates
are highly significant. In summary, log Ps association with MW changes
magnitude [significant different at 5% level of significance] for the non-
druggables. Log Ds association with MW does not swap sign [insignificant
difference at 5%] for the Ro5 violators. The association between PSA and
MW is significantly positive for nondruggable vs druggables, respectively.
For demonstration, the pairwise association of logP vs. MW is reflected in
ordinal CA plots (Figure 1and 2).

FIGURE 1. LogP vs. MW (Drug-
gable)

FIGURE 2. LogP vs. MW (Nondrug-
gable)

Therefore, replacement of log D to measure lipophicility may reduce the
number of false-negatives incorrectly eliminated in drug-screening. Drug-
like responses are intrinsic properties of molecules and it is the responsibil-
ity of medicinal chemists to optimise molecular pharmacological properties
and also drug-like properties.
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TABLE 1. BDNI and CA estimates for Ro5 based Druggability (Quartile within
Strata)

φ̂BDNI(Druggable) φ̂BDNI(Nondruggable) Statistical
(95% C.I.) (95% C.I.) difference

LogP vs. LogD 0.00389 0.05514 insignificant
(-0.05003,0.05782) (-0.02562,0.13589)

LogP vs. MW 0.45662 0.043812 significant
(0.38576,0.52748) (-0.05730,0.14553)

LogP vs. PSA -0.35759 -0.34021 insignificant
(-0.42369,-0.29150) (-0.44590,-0.23453)

MW vs. PSA 0.24461 0.37565 insignificant
(0.17802,0.31121) (0.18950,0.56180)

LogD vs. MW 0.21592 0.26539 insignificant
(0.16135,0.27048) (0.17051,0.36028)

LogD vs. PSA -0.33107 -0.32947 insignificant
(-0.38907,-0.27306) (-0.42829,-0.23003)
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