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Computational models

Modern engineering has to address problems of increasing complexity in
various fields including infrastructures (civil engineering), energy
(civil/mechanical engineering), aeronautics, defense, etc.

Complex systems are designed using computational models that are based
on:

- a mathematical description of the physics (e.g. mechanics, acoustics,
heat transfer, electromagnetism, etc.)

- numerical algorithms that solve the resulting set of (usually partial
differential) equations: finite element-, finite difference-, finite
volume- methods, boundary element methods)
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Computational models

Simulation models are calibrated and validated through comparison with lab
experiments and in situ / full scale measurements. Once they are validated,
these models may be run with different sets of input parameters in order to:

- explore the design space at low cost

- optimize the system w.r.t to cost criteria

- assess the robustness of the system w.r.t. uncertainties

Sources of uncertainty
Differences between the designed and the real system in terms of
material/physical properties and dimensions (tolerancing)

Unforecast exposures: exceptional service loads, natural hazards
(earthquakes, floods), climate loads (hurricanes, snow storms, etc.).
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Global framework for managing uncertainties

Step A
Model(s) of the system

Assessment criteria

Step B
Quantification of

sources of uncertainty

Step C
Uncertainty propagation

Random variables Computational model Moments

Probability of failure

Response PDF

Step C’
Sensitivity analysis

Step C’
Sensitivity analysis
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Step A: computational models (civil & mechanical engineering)

Computational
model M

Vector of input
parameters

x ∈ RM

Model response
y =M(x) ∈ RN

geometry
material
properties
loading

analytical formula
finite element
model
etc.

displacements
strains, stresses
temperature,
etc.
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Step B: probabilistic models of input parameters

No data exist
expert judgment for selecting the input PDF’s of X
literature, data bases (e.g. on material properties)
maximum entropy principle

Input data exist
classical statistical inference
Bayesian statistics when data is scarce but there is some prior information

Data on output quantities
inverse probabilistic methods and Bayesian updating techniques
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Step B: stochastic inverse problems
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Step C: principles of uncertainty propagation

Computational
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Model response
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Random variables
X Computational
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Random response
Y =M(X)
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Step C: uncertainty propagation methods
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Limit state function

For the assessment of the system’s performance, failure criteria are
defined, e.g. :

Failure ⇔ q =M(X) ≥ qadm

Examples:
- admissible stress / displacements in civil engineering
- max. temperature in heat transfer problems
- crack propagation criterion in fracture mechanics

The failure criterion is cast as a limit state function (performance
function) g : x ∈ DX 7→ R such that:

g (x,M(x)) ≤ 0 Failure domain Df

g (x,M(x)) > 0 Safety domain Ds

g (x,M(x)) = 0 Limit state surface

Failure domain
Df = {x: g(x) ≤ 0}

Safe domain Ds

X1

X2
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Probability of failure
The probability of failure is defined by:

Pf = P ({X ∈ Df }) = P (g (X ,M(X)) ≤ 0)

Pf =
∫
Df

fX(x) dx

Features
Pf is defined as a multidimensional integral, whose dimension is equal to
the number of basic input variables M = dim X .

The domain of integration is not known explicitly: it is defined by a
condition related to the sign of the limit state function, which depends
itself on the basic variables through a (potentially complex) mechanical
model:

Df = {x ∈ DX : g(x,M(x)) ≤ 0}

Failures are (usually) rare events: the probability of interest typically
ranges from 10−2 to 10−8.
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FORM
Importance sampling

3 Metamodels in rare event simulation
Kriging
Adaptive kriging for structural reliability
Meta-model- based importance sampling

4 Application examples
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FORM
Importance sampling

Monte Carlo simulation
Basic equations

Let us introduce the indicator function of the failure domain:

1Df (x) =
{

1 if g (x,M (x)) ≤ 0
0 otherwise

The probability of failure reads:

Pf =
∫

Df ={x : g(x,M(x))≤0}
fX(x) dx

=
∫
RM

1Df (x) fX(x) dx = E
[
1Df (X)

]
The following estimator is used:

P̂f = 1
N

N∑
i=1

1Df (X i) X i : i.i.d copies of X
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Monte Carlo simulation
FORM
Importance sampling

Estimator of the probability of failure Pf

A sample set of input parameters X = {x1, . . . , xN}, is drawn. For each
sample the model response is computed and the limit state function
g (xi ,M (xi)) is evaluated.
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Estimator of the probability of failure Pf

A sample set of input parameters X = {x1, . . . , xN}, is drawn. For each
sample the model response is computed and the limit state function
g (xi ,M (xi)) is evaluated.

The number of negative values of the g-function, say Nf is stored. and Pf
is estimated by:

Pf = Nf

N
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Estimator of the probability of failure Pf

The estimator P̂f is a sum of Bernoulli variables: it has a binomial
distribution with mean value E

[
P̂f
]

= Pf (unbiasedness) and variance

Var
[
P̂f
]

= 1
N Pf (1− Pf ).

Its coefficient of variation reduces to CV ≈ 1/
√

N Pf for rare events.

The convergence rate of Monte Carlo simulation is ∝ 1/
√

N

Minimal size of the sample set
Suppose the probability of failure under consideration is of magnitude Pf = 10−k and
an accuracy of 5% is aimed at.

CVPf =
1√
N Pf

CVPf ≤ 5% =⇒ N ≥ 4.10k+2

Pf Nmin

10−2 40,000
10−3 400,000
10−4 4,000,000
10−6 400,000,000
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Introduction

Principle
The First Order Reliability Method (FORM) aims at approximating the
integral which defines the probability of failure. It relies upon three steps:
an iso-probabilistic transform of the input random vector X into a
standard normal vector U

the search for the design point in this space

the linearization of the limit state surface at the design point and the
computation of the approximated failure probability
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Step 1: iso-probabilistic transform

Principle
The input random vector X is transformed into a standard normal
random vector U . Let us denote by T the iso-probabilistic transform:

X ∼ fX X = T (U ) where U ∼ N (0, IM)

This reduces to a mapping of the integral from the physical space (that of
X) to the standard normal space (that of U ):

Pf =
∫

Df ={u∈RM : g(T (u))≤0}
ϕM (u) du

where the standard normal PDF reads:

ϕM (u) = (2π)−M/2 exp
[
−1

2(u2
1 + · · ·+ u2

M )
]
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Step 1: iso-probabilistic transform
Illustration

X1

X2

µ1

µ2

Failure domain
Df = {x : g(x) ≤ 0}

Safe domain
Ds

Physical space

U1

U2
Failure domain

Df = {u : g(T (u)) ≤ 0}

Safe domain
Ds

Standard normal space
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Step 1: iso-probabilistic transform
Measure of a subdomain

When measuring a subset (e.g. the failure domain) of the
Gaussian space, the points that contribute the most to the

result are those that are close to the origin
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Step 2: Search of the design point

U1

U2

βHL

α

Failure domain
Df

U ∗

The design point U ∗ is defined as the
point of the failure domain that is the
closest to the origin in the standard
normal space.
It is obtained by solving the constrained
optimization problem:

U ∗ = arg min
U∈RM

{‖ U ‖2 , g(T (U )) ≤ 0}

The design point is the most probable failure point
in the standard normal space

The distance βHL =‖ U ∗ ‖ is the Hasofer-Lind reliability index.
The unit vector α is defined so that U ∗ = βHL α
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Step 3: FORM approximation
Linearization at the design point

U1

U2

βHL

α

Failure domain
Df

U ∗
Pf =

∫
Df ={u∈RM : g(T (u))≤0}

ϕM (u) du
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Step 3: FORM approximation
Linearization at the design point

U1

U2

βHL

α

U ∗

Approximate
failure domain

HU∗
Pf =

∫
Df ={u∈RM : g(T (u))≤0}

ϕM (u) du

The failure domain Df is replaced by the
half-space that is tangent at the design
point U ∗:

Pf ≈
∫

HU∗
ϕM (u) du
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U1

U2

βHL

α

U ∗

Approximate
failure domain

HU∗
Pf =

∫
Df ={u∈RM : g(T (u))≤0}

ϕM (u) du

The failure domain Df is replaced by the
half-space that is tangent at the design
point U ∗:

Pf ≈
∫

HU∗
ϕM (u) du

The halfspace HU ∗ may be defined by its distance to the origin which is
the Hasofer-Lind reliability index βHL and a unit normal vector.

HU ∗ : βHL − α · u ≤ 0

The approximation of the probability of failure reduces to computing the
measure of a half-space.
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Step 3: FORM approximation
Measure of a half-space

U1

U2

β

α

A half-space may be defined by an
hyperplane whose reduced equation
reads:

H(α, β) : β − α · u ≤ 0

where β is the Euclidean distance of the
hyperplane to the origin and α is a unit
normal vector.

The (Gaussian) measure of this half-space is:

P (β − α ·U ≤ 0) = Φ(−β)

where Φ is the standard normal CDF: Φ(x) =
∫ x

−∞
e−t2/2/

√
2π dt
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FORM in a nutshell

Ingredients
an iso-probabilistic transform of the input random vector X into a
standard normal vector U

the search for the design point U ∗ in this space (which requires e.g.
5− 10(M + 1) calls to g)

the linearization of the limit state surface at the design point and the
computation of the approximated failure probability:

Pf ,FORM = Φ (−βHL) βHL = ‖ U ∗ ‖

where βHL is the Hasofer-Lind reliability index.
Limitations

FORM relies upon the unicity of the design point.
The optimization algorithm may not converge.
The linear approximation of the limit state surface may be poor.
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Back to Monte Carlo simulation

Monte Carlo simulation is inefficient for
computing small probabilities of failure due to the
fact that most sample points are drawn in the
vicinity of µX whereas failure is related to
extreme realizations of X .

After transforming the problem in the standard normal space the
probability of failure reads:

Pf =
∫

Df ={u∈RM : g(T (u))≤0}
ϕM (u) du

Efficiency may be gained by modifying the sampling scheme in order to
concentrate the realizations in the region of interest

Importance sampling
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Importance sampling

Principle
Consider a distribution function h : RM 7→ R such that
h(x) 6= 0 ∀ x ∈ Df . Then:

Pf =
∫
RM

1Df (u)ϕM (u) du

=
∫
RM

1Df (u)ϕM (u)
h(u) h(u) du

= Eh

[
1Df (Z)ϕM (Z)

h(Z)

]
Z ∼ h(x)

h is called the importance sampling or instrumental density.

It is freely selected provided it is non zero over the failure domain.
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Importance sampling estimator

Monte Carlo estimator

P̂f ,IS = 1
N

N∑
i=1

1Df (Z i)ϕM (Z i)
h(Z i)

Z i ∼ h(x), i.i.d

P̂f ,IS is unbiased and convergent:

Var
[
P̂f ,IS

]
= 1

N Varh

[
1Df (Z)ϕM (Z)

h(Z)

]
Optimal instrumental density

The optimal instrumental density h∗ allows one to
achieve the minimal variance for P̂f ,IS :

h∗(x) =
1Df (x)ϕM (x)

Pf

The optimal importance sampling density
depends on the unknown quantity Pf !

(Rubinstein, 2008)
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FORM-based importance sampling Melchers (1989)

Following the development of FORM, engineers tried to take advantage
from the information brought by a FORM analysis in order to build a
suitable importance sampling density h.

The design-point importance sampling is based on:
- the computation of the design point by FORM

- the use of a shifted multinormal PDF that is centered on U ∗ as an
instrumental density:

h(x) = ϕM (x −U ∗) = (2π)−M/2e−
1
2 ‖x−U∗‖

The IS estimator reads:

P̂f ,IS = 1
N

N∑
i=1

1Df (U i)
ϕM (U i)

ϕM (U i −U ∗)

= 1
N e−β

2/2
N∑

i=1

1Df (U i) exp(−U i ·U ∗)
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Illustration

Crude Monte Carlo simulation Design point importance sampling
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Conclusion

Monte Carlo simulation is usually not applicable directly in structural
reliability problems due to its computational cost.

In contrast FORM (and its second-order extension SORM) are very
efficient. However no error estimate is available.

Importance sampling (IS) tries to combine both approaches, i.e. it is a
simulation method which concentrates the samples in the region of
interest.

- FORM-based IS makes use of a multinormal instrumental density
centered on FORM’s design point.

- Other approaches exist, e.g. the cross-entropy method.
Alternative simulation methods such as directional simulation and subset
simulation (splitting) have been proposed in the last decade. They remain
costly.

In order to compute rare event probabilities using ≈ 100− 1000
runs of the limit state function, meta-models are required
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What is a meta-model?

Definition
A meta-model g̃ is a fast-to-evaluate function that mimics the behaviour
of the initial limit state function g, i.e. g(x) ≈ g̃(x) ∀ x ∈ A ⊂ RM .

It is built using a set of runs of the true limit state function on a so-called
experimental design:

X =
{

x(1), . . . , x(N)}
i.e. :

Γ =
{

g
(
x(1)) , . . . , g (x(N))}T

Experimental designs may be fixed (e.g. Latin Hypercube sampling,
low-discrepancy sequences, etc.) or adaptively enriched.
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Types of meta-models in structural reliability (Sudret, 2012)

Polynomial expansions:
FORM may be considered as a linear approximation of the limit state
function in the standard normal space: G̃(u) ≈ βHL − α ·U .

SORM is based on a parabolic second-order expansion.
More generally polynomial chaos expansions may be used:

G̃(u) =
∑
j∈J

aj Ψj(u) (Orthogonal polynomials)

Support vector machines: G̃(u) =
∑

j

aj K(u,uj)

Kriging
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Kriging surrogate (a.k.a Gaussian process modelling)

Heuristics Sacks et al. , (1989)

The limit state function y = g(x) as a function is assumed to be a particular
realization of a Gaussian process Y (x, ω):

Y (x, ω) = f (x)T a + Z (x, ω)

where:
the mean value is parameterized by a set of prescribed functions
{fi , i = 1, . . . ,P} (regression part)
Z (x, ω) is a zero-mean stationary Gaussian process with variance σ2

Y and
assumed covariance function:

CYY
(
x, x′

)
= σ2

Y R
(
x − x′ , θ

)
e.g. σ2

Y exp

(
M∑

k=1

−
(

xk − x ′k
θk

)2
)

The Gaussian measure artificially introduced on Y (x) is different
from the aleatory uncertainty on the model parameters X
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Best linear unbiased estimator (BLUE)

Problem statement
The available data X =

{(
x(i), y(i) = g

(
x(i))) , i = 1, . . . ,N

}
is a set

of pointwise observations of the specific trajectory g(x) = Y (x, ω0).

In other words, Γ =
{

g
(
x(1)) , . . . , g (x(N))}T is a realisation of a

Gaussian vector Y = {Y1, . . . ,YN} where Yi ≡ Y (xi , ω).

Of interest is the prediction of Y0 ≡ Y (x, ω) for other points x ∈ DX .

The BLUE is cast as:

Ŷ0 =
M∑

i=1

ai(x) Yi

such that it is unbiased : E
[
Ŷ0 −Y0

]
= 0 with minimum variance

E
[(

Y0 − Ŷ0
)2
]
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Kriging surrogate
Solution

Mean predictor

g̃(x) def= µŶ (x) = f (x)T â + r (x)T R−1 (Γ− F â)

where:

ri(x) = R
(
x − x(i), θ

)
, i = 1, . . . ,N

Rij = R
(
x(i) − x(j), θ

)
, i = 1, . . . ,N , j = 1, . . . ,N

Fij = fj
(
x(i)) , i = 1, . . . , p, j = 1, . . . ,N

The result is independent of the choice of the properties of the
Gaussian process, i.e. whatever a, σ2

Y , θ

Kriging variance

σ2
Ŷ

(x) = σ2
Y

(
1−

〈
f (x)T r (x)T 〉 [ 0 FT

F R

]−1 [
f (x)
r (x)

])
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Estimation of the parameters (Santner et al. , 2003)

Unknown parameters
a: coefficients of the regression part

σ2
Y : variance of the process
θ: correlation lengths in the covariance function

Maximum likelihood estimation
The likelihood function is obtained from the joint Gaussian distribution of
{Y1, . . . ,YN}.

A single realization is available, namely the vector of observations
Γ =

{
g
(
x(1)) , . . . , g (x(N))}T.

Analytical solutions are available for â and σ2
Ŷ

conditionally to θ. The
maximization w.r.t θ is carried out numerically.
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Visualization of a kriging surrogate
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Kriging surrogate

Experimental design

95% confidence interval

The surrogate µŶ
interpolates the function
g on the experimental
design:

µŶ

(
x(i)) = g

(
x(i))

σ2
Ŷ

(
x(i)) = 0

Due to gaussianity
confidence intervals may
be drawn.

Kriging provides a built-in estimation
of the (epistemic) error of the surrogate
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Kriging surrogate and active learning
The kriging variance yields an estimation of the accuracy of the
meta-model which may be used in an active learning context.
The experimental design is enriched iteratively in regions which are
meaningful for evaluating the probability of failure, i.e. the vicinity of the
limit state surface g(x) = 0.

Enrichment criteria
expected feasibility function (Bichon et al. (2008) ; Bect et al. (2011))

EF(x) = E [Feas(x)] Feas(x) = max
{
ε− |Ŷ (x)| , 0

}
Learning function (Echard et al. , 2011-12)

U (x) =
|µŶ (x)|
σŶ (x)

Probabilistic classification function (Dubourg et al. , 2011-12)
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Probabilistic classification function

Definition
π(x) = P

[
Ŷ (x) ≤ 0

]
= Φ

(0− µŶ (x)
σŶ (x)

)
P is the Gaussian measure associated with the Gaussian process

Interpretation Assume the surrogate is “good” for a specific x0
(σŶ (x0)→ 0+):

If µŶ (x0) ≈ g (x0) > 0 then π(x0) ≈ 0
If µŶ (x0) ≈ g (x0) < 0 then π(x0) ≈ 1

π(x) is a smooth surrogate of the indicator function 1Df (x)
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Margin of uncertainty on the limit state surface

The margin of uncertainty
M is defined by the (1 −
α)-confidence region of the
surrogate limit state sur-
face µŶ = 0, i.e. the set
of points such that:

α/2 ≤ π(x) ≤ 1− α/2

M =
{

x : −k σŶ (x) ≤ µŶ (x) ≤ +k σŶ (x)
}
, k = Φ−1(1−α/2) e.g. 1.96
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Enrichment in the margin of uncertainty

The enrichment criterion C(x) is defined as the (Gaussian) measure of the
margin in each point x.

C(x) = P
[
−k σŶ (x) ≤ Ŷ (x) ≤ k σŶ (x)

]
It could be maximized in order to find the next point to add to the current
experimental design.

It may better be used as a (improper) sampling density in order to draw
candidate points for the enrichment (Markov chain Monte Carlo
simulation):

fC(x) ∝ C(x) fX(x)

A batch of reduced size is obtained by K -means clustering.
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Sampling in the margin

C (u) = P [u ∈ M] 1√
uT u≤ β0

(u)
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Estimators of Pf by substitution

Classical approach
At each step of the active learning, the probability of failure may by
estimated by substituting for the Kriging surrogate g̃ ≡ µŶ into the
definition of the probability of failure:

Pf ≈ P̃f = P (g̃(X) ≤ 0) =
∫

D̃f =
{

x: µ
Ŷ

(X)≤0
} fX(x) dx

Monte Carlo simulation may be used now since evaluating the surrogate
µŶ (x) is inexpensive.

Bounds denoted by P̃−f /P̃
+
f may also be computed by using

µŶ (x)± k σŶ (x) as a surrogate.

Meta-IS: the kriging surrogate is used as a tool for deriving a quasi-optimal
importance sampling density.
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Reminder on importance sampling

Definition

Pf =
∫
RM

1Df (x) fX(x)
h(x) h(x) dx = Eh

[
1Df (X) fX(X)

h(X)

]
The optimal IS density reads: Rubinstein (2008)

h∗(x) =
1Df (x) fX(x)

Pf

g(x1, x2) = 5− x2 − 1
2 (x1 − 0.1)2

It is not tractable in practice since it
involves the unknown Pf !
It may be approximated using the kriging
surrogate.
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Quasi-optimal IS density

Proposed IS density: (Dubourg et al. , 2012)

h∗(x) =
1Df (x) fX(x)

Pf
 h̃(x) ≡ π(x) fX(x)

Pfε
π(x) = Φ

(−µŶ (x)
σŶ (x)

)
where the augmented probability of failure Pfε reads:

Pfε = E [π(X)] =
∫
RM

π(x) fX(x) dx

Unbiased estimator of Pf :

Pf =
∫
RM

1Df (x) fX(x)
h̃(x)

h̃(x) dx = Pfε ·
∫
RM

1Df (x)
π(x) h̃(x) dx︸ ︷︷ ︸
αcorr

Pf = Pf ε · Eh̃

[1Df (x)
π(x)

]
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Monte Carlo estimator

The meta-IS estimator of Pf is the product of two terms, namely the
augmented probability of failure and a correction factor:

P̂f = P̂fε · α̂corr

P̂fε = 1
Nε

Nε∑
l=1

π(x(l))
computed from the kriging surrogate
(inexpensive if Nε ∼ 103−4)
x(l) ∼ fX(x)

α̂corr = 1
Ncorr

Ncorr∑
k=1

1Df (x̃(k))
π(x̃(k))

computed from the original “true” limit
state function
x(k) ∼ h̃(x)

Interpretation
The correction factor emphasizes the samples that are misclassified by the
smoothed kriging-based limit state function π.
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Two-dimensional series system
Au & Beck (1999)

Limit state function

g(x1, x2) = min
{

c − 1− x2 + e−x2
1/10 +

(x1

5

)4
,

c2

2 − x1 x2

}
where X1,X2 ∼ N (0, 1).

5 0 5
u1

8

6

4

2

0

2
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u
2

ĥ ∗ (u)∝π(u) φ(u)

g(u) =
0

g(u) =0

ĝ(u) =0

ĝ(u) =0

0.00
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φ

Three case studies :
c = 3, 4 or 5
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Two-dimensional series system
Results

Method Monte Carlo (ref) Subset Meta-IS1

N 107 300,000 44 + 600
pf 3.48× 10−3 3.48× 10−3 3.54× 10−3c = 3
C.o.V. 0.5% <3% <5%
N 108 500,000 64 + 600
pf 8.94× 10−5 8.34× 10−5 8.60× 10−5c = 4
C.o.V. 3.3% <4% <5%
N 109 700,000 40 + 2,900
pf 9.28× 10−7 6.55× 10−7 9.17× 10−7c = 5
C.o.V. 3.3% <5% <5%

About 3% accuracy on Pf (less than 0.2% error on β) in the range
[10−7, 10−3]

1Ntot = N + NIS.
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Finite element reliability analysis
Truss structure Blatman (2009)

g(X) = V1 − FEM (X)

X = {E1,E2,A1,A2,P1, ...,P6}
T

Variable Distribution Mean C.V
E1, E2 (Pa) Lognormal 2.10×1011 10%
A1 (m2) Lognormal 2.0×10−3 10%
A2 (m2) Lognormal 1.0×10−3 10%
P1-P6 Gumbel 5.0×104 15%
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Finite element reliability analysis
Results

Threshold Importance sampling FORM Meta-ISa

(cm) Blatman (2009)
Ntot 500,000 121 160 +31
Pf 4.00× 10−2 2.81× 10−2 4.35× 10−2 (C.o.V.=1.2%)10
β 1.75 1.91 1.71
Ntot 500,000 121 160 +31
Pf 3.45× 10−5 1.28× 10−5 3.47× 10−5 (C.o.V.=3.7%)14
β 3.98 4.21 3.98

aNtot = N + NIS.

About the same cost as FORM
Unbiased estimation of Pf within 1% accuracy (on Pf !!)
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Summary

The quantification of rare events probabilities is of great importance in
civil & mechanical engineering since it is related to the reliability of the
systems under consideration.

The probability of failure is cast as a multidimensional integral whose
direct computation is not possible due to the implicit definition of the
failure domain.

Crude Monte Carlo simulation is not efficient and in practice not
applicable due to unaffordable computational costs.

Advanced simulation methods based on importance sampling and subset
simulation are still too expansive in many situations. The only solution is
then to use surrogate models.
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Summary

Kriging (a.k.a Gaussian process modelling) is a type of surrogate models
that provides an error indicator which may be used in the context of
active learning (adaptive experimental designs).

The Kriging variance is used for two purposes:

define a probabilistic classification function π(x) = Φ
(0− µŶ (x)

σŶ (x)

)
which is used in order to enrich the experimental design.

define “confidence intervals” on the surrogate models, e.g.
µŶ (x)± k σŶ (x) which allows one to compute (not necessarily
strict) bounds on Pf .

In most current approaches there is no proof that the probability of failure
computed by substituting µŶ for g is unbiased.
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Summary

In meta-model-based importance sampling (meta-IS), Kriging is used as a
tool for deriving a quasi-optimal importance sampling density.

An unbiased estimator of Pf is obtained as the product of the augmented

probability of failure Pfε = EX [π(X)] =
∫
RM

π(x) fX(x) dx and a

correction factor.

Although Pfε is often a good estimation of Pf , the correction factor
ensures that the estimator is unbiased by accounting for the possible
misclassification of certain points by the surrogate limit state function.

Thank you very much for your attention !
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