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I. On strong approximation for the partial sums

• When (Xi)i≥1 is a sequence of iid centered real-valued random variables

with a finite second moment, the ASIP says that a sequence (Zi)i≥1 of iid
centered Gaussian variables may be constructed is such a way that

sup
1≤k≤n

∣∣∣
k∑

i=1

(Xi − Zi)
∣∣∣ = o(bn) almost surely,

where bn = (n log logn)1/2 (Strassen (1964)).
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I. On strong approximation for the partial sums

• When (Xi)i≥1 is a sequence of iid centered real-valued random variables

with a finite second moment, the ASIP says that a sequence (Zi)i≥1 of iid
centered Gaussian variables may be constructed is such a way that

sup
1≤k≤n

∣∣∣
k∑

i=1

(Xi − Zi)
∣∣∣ = o(bn) almost surely,

where bn = (n log logn)1/2 (Strassen (1964)).

• When (Xi)i≥1 is assumed to be in addition in L
p with p > 2, then we can

obtain rates in the ASIP:

bn = n1/p

(see Major (1976) for p ∈]2, 3] and Komlós, Major and Tusnády for p > 3).
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The construction of Major.

• Choose an appropriate numerical sequence 0 = n0 < n1 < · · · < nk < . . .

and let

kn = sup{k ∈ N such that nkn ≤ n}
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The construction of Major.

• Choose an appropriate numerical sequence 0 = n0 < n1 < · · · < nk < . . .
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− Snk−1 , Tnk

− Tnk−1)k≥1 are constructed in such a way

that there are independent.
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The construction of Major.

• Choose an appropriate numerical sequence 0 = n0 < n1 < · · · < nk < . . .

and let

kn = sup{k ∈ N such that nkn ≤ n}

• The r.v.’s (Snk
− Snk−1 , Tnk

− Tnk−1)k≥1 are constructed in such a way

that there are independent.

• First construction: Let Fk(x) = P(Snk
− Snk−1 ≤ x) and let (δi)i≥1 be a

sequence of iid r.v.’s ∼ U([0, 1]). Assume that E(X2
1 ) = 1. Define then

Snk
− Snk−1 = F−1

k (δk) and Tnk
− Tnk−1 = (nk − nk−1)

1/2Φ−1(δk)
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The construction of Major.

• Second construction: let (δi)i≥1 be a sequence of iid r.v.’s ∼ U([0, 1])
independent of the sequence (Xi) (enlarge the probability space if
necessary). Let S̃k = Snk

− Snk−1 . Define then

Tnk
− Tnk−1 = (nk − nk−1)

1/2Φ−1(Fk(S̃k − 0) + δk(Fk(S̃k)− Fk(S̃k − 0)))
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The construction of Major.

• Second construction: let (δi)i≥1 be a sequence of iid r.v.’s ∼ U([0, 1])
independent of the sequence (Xi) (enlarge the probability space if
necessary). Let S̃k = Snk

− Snk−1 . Define then

Tnk
− Tnk−1 = (nk − nk−1)

1/2Φ−1(Fk(S̃k − 0) + δk(Fk(S̃k)− Fk(S̃k − 0)))

• Setting T̃k = Tnk
− Tnk−1 , both constructions satisfy

‖S̃k − T̃k‖22 =

∫ 1

0

(F−1
k (x)− Φ−1

nk−nk−1
(x))2dx

= W 2
2 (PS̃k

, Gnk−nk−1) .
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The construction of Major.

• Second construction: let (δi)i≥1 be a sequence of iid r.v.’s ∼ U([0, 1])
independent of the sequence (Xi) (enlarge the probability space if
necessary). Let S̃k = Snk

− Snk−1 . Define then

Tnk
− Tnk−1 = (nk − nk−1)

1/2Φ−1(Fk(S̃k − 0) + δk(Fk(S̃k)− Fk(S̃k − 0)))

• Setting T̃k = Tnk
− Tnk−1 , both constructions satisfy

‖S̃k − T̃k‖22 =

∫ 1

0

(F−1
k (x)− Φ−1

nk−nk−1
(x))2dx

= W 2
2 (PS̃k

, Gnk−nk−1) .

• If the random variables are in L
p for p > 2, we then get that

‖Snk
− Snk−1 − (Tnk

− Tnk−1)‖22 = O(1 ∨ (nk − nk−1)
2−p/2),

interpolating the results by Ibragimov (66), Sakhanenko (85), Rio (09)

Strong approximations in the dependent setting – p. 4



The construction of Major.

• Assume that the sequence has many moments (more than 4) and allow

some log in the symbol O(·). Then by the Kolmogorov inequality, we get
that almost surely

sup
j≤k

|Snj − Tnj | = O(k1/2)

and we also have (if nk − nk−1 is monotone and goes to infinity fast
enough)

sup
j≤k−1

sup
nj<n<nj+1

|Sn − Snj | = O((nk − nk−1)
1/2)
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The construction of Major.

• Assume that the sequence has many moments (more than 4) and allow

some log in the symbol O(·). Then by the Kolmogorov inequality, we get
that almost surely

sup
j≤k

|Snj − Tnj | = O(k1/2)

and we also have (if nk − nk−1 is monotone and goes to infinity fast
enough)

sup
j≤k−1

sup
nj<n<nj+1

|Sn − Snj | = O((nk − nk−1)
1/2)

• Choose nk = k2. Then almost surely, supk≤n |Sk − Tk| = O(n1/4).
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The construction of Major.

• Assume that the sequence has many moments (more than 4) and allow

some log in the symbol O(·). Then by the Kolmogorov inequality, we get
that almost surely

sup
j≤k

|Snj − Tnj | = O(k1/2)

and we also have (if nk − nk−1 is monotone and goes to infinity fast
enough)

sup
j≤k−1

sup
nj<n<nj+1

|Sn − Snj | = O((nk − nk−1)
1/2)

• Choose nk = k2. Then almost surely, supk≤n |Sk − Tk| = O(n1/4).

• With this construction no way to get better rate than n1/4.
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The dependent setting. M. and Rio (2012).

• Let mk = nk − nk−1, S̃k = Snk
− Snk−1 and T̃k = Tnk

− Tnk−1 .
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0 ) + 2

∑
k≥1 E(X0Xk) is convergent to some
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The dependent setting. M. and Rio (2012).

• Let mk = nk − nk−1, S̃k = Snk
− Snk−1 and T̃k = Tnk

− Tnk−1 .

• Assume that E(X2
0 ) + 2

∑
k≥1 E(X0Xk) is convergent to some

nonnegative real σ2.

• Let F̃k be the d.f. of the conditional law of S̃k given σ(Xj , j ≤ nk−1).

• Define then

Tnk
− Tnk−1 = σ

√
mkΦ

−1(F̃k(S̃k − 0) + δk(F̃k(S̃k)− F̃k(S̃k − 0)))

It is independent of σ(Xj, j ≤ nk−1) and with law Gσ2mk
.
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The dependent setting. M. and Rio (2012).

• Let mk = nk − nk−1, S̃k = Snk
− Snk−1 and T̃k = Tnk

− Tnk−1 .

• Assume that E(X2
0 ) + 2

∑
k≥1 E(X0Xk) is convergent to some

nonnegative real σ2.

• Let F̃k be the d.f. of the conditional law of S̃k given σ(Xj , j ≤ nk−1).

• Define then

Tnk
− Tnk−1 = σ

√
mkΦ

−1(F̃k(S̃k − 0) + δk(F̃k(S̃k)− F̃k(S̃k − 0)))

It is independent of σ(Xj, j ≤ nk−1) and with law Gσ2mk
.

• We are lead to estimate

‖S̃k−T̃k‖22 = E

∫ 1

0

(F̃−1
k (x)−Φ−1

σ2mk
(x))2dx = E

(
W 2

2 (PS̃k|Fnk−1
, Gσ2mk

)
)
.
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A bound for the ”conditional” W2

• P and Q two probability laws on R with d.f. F et G.

W 2
2 (P,Q) =

∫ 1

0

(F−1(u)−G−1(u))2du .
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A bound for the ”conditional” W2

• P and Q two probability laws on R with d.f. F et G.

W 2
2 (P,Q) =

∫ 1

0

(F−1(u)−G−1(u))2du .

• Λ2 = {f ∈ C1 : |f ′(x)− f ′(y)| ≤ |x− y|}
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A bound for the ”conditional” W2

• P and Q two probability laws on R with d.f. F et G.

W 2
2 (P,Q) =

∫ 1

0

(F−1(u)−G−1(u))2du .

• Λ2 = {f ∈ C1 : |f ′(x)− f ′(y)| ≤ |x− y|}
• Lemma (M. and Rio (2012)) : Let Z be a r.v. with values in (E,L(E),m) (a

purely non atomic Lebesgue space) and let F = σ(Z). Let U and V r.v.’s
with V independent of F . Let σ2 > 0 and N ∼ N (0, σ2) independent of

σ(Z,U, V ). Then

E
(
W 2

2 (PU|F , PV )
)
≤ 16 sup

f∈Λ2(E)

E
(
f(U +N,Z)− f(V +N,Z)

)
+ 8σ2 ,

where Λ2(E) is the set of functions f : R× E → R wrt L(R× E) and

B(R), such that f(·, z) ∈ Λ2 et f(0, z) = f ′(0, z) = 0 for z ∈ E.
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Rates in the ASIP under α-dependence

• Let F0 = σ(Xi, i ≤ 0) and the dependence coefficients: α2(0) = 1,

α2(k) = sup
i≥j≥k

sup
(s,t)∈R2

‖P(Xi ≤ t,Xj ≤ s|F0)−P(Xi ≤ t,Xj ≤ s)‖1 , k ≥ 1
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Rates in the ASIP under α-dependence

• Let F0 = σ(Xi, i ≤ 0) and the dependence coefficients: α2(0) = 1,

α2(k) = sup
i≥j≥k

sup
(s,t)∈R2

‖P(Xi ≤ t,Xj ≤ s|F0)−P(Xi ≤ t,Xj ≤ s)‖1 , k ≥ 1

• Proposition (M. and Rio (2012)) : Assume that the series

E(X2
0 ) + 2

∑
k≥1 E(X0Xk) is convergent to some nonnegative real σ2. If

σ2 > 0, then there exists a positive constant C depending on σ2 such, that
for any n > 0,

E
(
W 2

2 (PSn|F0
, Gnσ2)

)
≤ Cn1/2

∫ 1

0

Q(u)R(u)(R(u) ∧ n1/2)du ,

with Q(u) = inf{t ≥ 0 : P(|X0| > t) ≤ u}, R(u) = α−1
2 (u)(Q(u) ∨ 1).
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Rates under α-dependence

• Theorem (M. and Rio (2012)) : Let p ∈]2, 3]. Assume that

∑

k≥1

kp−2

∫ α2(k)

0

Qp
|X0|

(u)du < ∞ .

Then the series E(X2
0 ) + 2

∑
k≥1 E(X0Xk) is convergent to some

nonnegative real σ2 and there exists a sequence (Zi)i≥1 of iid r.v.’s

∼ N (0, σ2) such that almost surely

sup
k≤n

|Sk−Tk| =





0(n1/p(log n)1/2−1/p) if p ∈]2, 3[
0(n1/3(logn)1/2(log logn)ǫ+1/3) if p = 3 for any ǫ > 0 .
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Rates under α-dependence

• Theorem (M. and Rio (2012)) : Let p ∈]2, 3]. Assume that

∑

k≥1

kp−2

∫ α2(k)

0

Qp
|X0|

(u)du < ∞ .

Then the series E(X2
0 ) + 2

∑
k≥1 E(X0Xk) is convergent to some

nonnegative real σ2 and there exists a sequence (Zi)i≥1 of iid r.v.’s

∼ N (0, σ2) such that almost surely

sup
k≤n

|Sk−Tk| =





0(n1/p(log n)1/2−1/p) if p ∈]2, 3[
0(n1/3(logn)1/2(log logn)ǫ+1/3) if p = 3 for any ǫ > 0 .

• For bounded r.v. the condition holds if α2(n) = O(n1−p(logn)−1−ε)

whereas as the condition in Shao and Lu (87) requires α(n) = 0(n−p).
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Dynamical systems (1)

• For γ in ]0, 1[, consider the intermittent map Tγ from [0, 1] to [0, 1]

Tγ(x) =




x(1 + 2γxγ) if x ∈ [0, 1/2[

2x− 1 if x ∈ [1/2, 1] .
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Tγ(x) =




x(1 + 2γxγ) if x ∈ [0, 1/2[

2x− 1 if x ∈ [1/2, 1] .

• Denote by νγ the unique Tγ-invariant probability on [0, 1] such that νγ ≪ λ.
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Dynamical systems (1)

• For γ in ]0, 1[, consider the intermittent map Tγ from [0, 1] to [0, 1]

Tγ(x) =




x(1 + 2γxγ) if x ∈ [0, 1/2[

2x− 1 if x ∈ [1/2, 1] .

• Denote by νγ the unique Tγ-invariant probability on [0, 1] such that νγ ≪ λ.

• Let Qγ be the Perron-Frobenius operator of Tγ with respect to νγ defined

by

νγ(f.g ◦ Tγ) = νγ(Qγ(f).g)

for any bounded measurable functions f and g.
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• Let Qγ be the Perron-Frobenius operator of Tγ with respect to νγ defined

by

νγ(f.g ◦ Tγ) = νγ(Qγ(f).g)

for any bounded measurable functions f and g.

• Let (Yi)i≥0 be a stationary the Markov chain with invariant measure νγ and
transition Kernel Qγ .
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Dynamical systems (1)

• For γ in ]0, 1[, consider the intermittent map Tγ from [0, 1] to [0, 1]

Tγ(x) =




x(1 + 2γxγ) if x ∈ [0, 1/2[

2x− 1 if x ∈ [1/2, 1] .

• Denote by νγ the unique Tγ-invariant probability on [0, 1] such that νγ ≪ λ.

• Let Qγ be the Perron-Frobenius operator of Tγ with respect to νγ defined

by

νγ(f.g ◦ Tγ) = νγ(Qγ(f).g)

for any bounded measurable functions f and g.

• Let (Yi)i≥0 be a stationary the Markov chain with invariant measure νγ and
transition Kernel Qγ .

• On ([0, 1], νγ), (Tγ , T
2
γ , . . . , T

k
γ ) =

L (Yk, . . . , Y2, Y1) (see Hennion and

Hervé (2001)).
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Dynamical systems (2)

• Any information on the law of
∑n

i=1(f ◦ T i
γ − νγ(f)) can be obtained by

studying the law of
∑n

i=1(f(Yi)− νγ(f)). The reverse time property
cannot be directly used to transfer almost sure results!
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Dynamical systems (2)

• Any information on the law of
∑n

i=1(f ◦ T i
γ − νγ(f)) can be obtained by

studying the law of
∑n

i=1(f(Yi)− νγ(f)). The reverse time property
cannot be directly used to transfer almost sure results!

• For every n > 0, α2,Y(n) ≤ Cn(γ−1)/γ (Dedecker, Gouëzel and M.

(2010)).
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Dynamical systems (2)

• Any information on the law of
∑n

i=1(f ◦ T i
γ − νγ(f)) can be obtained by

studying the law of
∑n

i=1(f(Yi)− νγ(f)). The reverse time property
cannot be directly used to transfer almost sure results!

• For every n > 0, α2,Y(n) ≤ Cn(γ−1)/γ (Dedecker, Gouëzel and M. (2010)).

• Let γ ∈]1/3, 1/2[ and f be a function of bounded variation. Then the series

σ2(f) = νγ((f − νγ(f))
2) + 2

∑

k>0

νγ((f − νγ(f))f ◦ T k
γ )

converges absolutely to some nonnegative number σ2(f) and, for any
ε > 0, there exists a sequence (Z∗

i )i≥1 of iid random variables with law

N(0, σ2(f)) such that

sup
k≤n

|
k∑

i=1

(f ◦ T i
γ − νγ(f)− Z∗

i )| = O(nγ(logn)1/2(log log n)(1+ε)γ) a.s.
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II. Strong approximation for the empirical process

• Let X = (Xi)i∈Z be a strictly stationary sequence of r.v. in R
d with

common distribution function F . Define the empirical process of X by

RX(s, t) =
∑

1≤k≤t

(
1Xk≤s − F (s)

)
, s ∈ R

d , t ∈ R
+ .
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II. Strong approximation for the empirical process

• Let X = (Xi)i∈Z be a strictly stationary sequence of r.v. in R
d with

common distribution function F . Define the empirical process of X by

RX(s, t) =
∑

1≤k≤t

(
1Xk≤s − F (s)

)
, s ∈ R

d , t ∈ R
+ .

• For d = 1 and iid r.v’s Xi, Kiefer (1972) constructed a continuous centered

Gaussian process KX with

E
(
KX(s, t)KX(s′, t′)

)
= (t ∧ t′)(F (s ∧ s′)− F (s)F (s′))

in such a way that

sup
(s,t)∈R×[0,1]

|RX(s, [nt])−KX(s, [nt])| = O(an) a.s. (∗)

with an = n1/3(log n)2/3.
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Strong approximation for the empirical process

• When d = 1 and for iid r.v’s Xi ∼ U [0, 1]), Komlós, Major and Tusnády (75)

obtained (∗) with an = (logn)2
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Strong approximation for the empirical process

• When d = 1 and for iid r.v’s Xi ∼ U [0, 1]), Komlós, Major and Tusnády (75)

obtained (∗) with an = (logn)2

• For iid random variables in R
d with general distribution with dependent

components, Csörgö and Révész (88) obtained (∗) with

an = n(2d−1)/(4d)(logn)3/2.
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d with general distribution with dependent

components, Csörgö and Révész (88) obtained (∗) with

an = n(2d−1)/(4d)(logn)3/2.

• For iid random variables in R
d with uniform distribution, Massart (89)

obtained (∗) with an = nd/(2d+2)(logn)3/2.
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Strong approximation for the empirical process

• When d = 1 and for iid r.v’s Xi ∼ U [0, 1]), Komlós, Major and Tusnády (75)

obtained (∗) with an = (logn)2

• For iid random variables in R
d with general distribution with dependent

components, Csörgö and Révész (88) obtained (∗) with

an = n(2d−1)/(4d)(logn)3/2.

• For iid random variables in R
d with uniform distribution, Massart (89)

obtained (∗) with an = nd/(2d+2)(logn)3/2.

• For the empirical distribution function and Tusnády type results, Rio (96)
obtained the rate O

(
n5/12(log n)c(d)

)
for iid random variables with the

uniform distribution.
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Strong approximation for the empirical process

• When d = 1 and for iid r.v’s Xi ∼ U [0, 1]), Komlós, Major and Tusnády (75)

obtained (∗) with an = (logn)2

• For iid random variables in R
d with general distribution with dependent

components, Csörgö and Révész (88) obtained (∗) with

an = n(2d−1)/(4d)(logn)3/2.

• For iid random variables in R
d with uniform distribution, Massart (89)

obtained (∗) with an = nd/(2d+2)(logn)3/2.

• For the empirical distribution function and Tusnády type results, Rio (96)
obtained the rate O

(
n5/12(log n)c(d)

)
for iid random variables with the

uniform distribution.

• Up to now, the best known rates for the strong approximation by a Kiefer
process are of the order n1/3 for d = 2.
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Absolutely regular sequences: a lower bound

• Let Xk = (Xj , j ≥ k) and

β(k) = ‖ sup
‖f‖∞≤1

|PXk|F0
(f)− PXk

(f)|‖1
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Absolutely regular sequences: a lower bound

• Let Xk = (Xj , j ≥ k) and

β(k) = ‖ sup
‖f‖∞≤1

|PXk|F0
(f)− PXk

(f)|‖1

• Theorem (Dedecker, M., Rio (12) : For any p > 2, there exists a stationary

Markov chain (Xi)i∈Z of random variables with uniform distribution over
[0, 1] and sequence of β-mixing coefficients (βn)n>0, such that:
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Absolutely regular sequences: a lower bound

• Let Xk = (Xj , j ≥ k) and

β(k) = ‖ sup
‖f‖∞≤1

|PXk|F0
(f)− PXk

(f)|‖1

• Theorem (Dedecker, M., Rio (12) : For any p > 2, there exists a stationary

Markov chain (Xi)i∈Z of random variables with uniform distribution over
[0, 1] and sequence of β-mixing coefficients (βn)n>0, such that:

• (i) 0 < lim infn→+∞ np−1βn ≤ lim supn→+∞ np−1βn < ∞.

Strong approximations in the dependent setting – p. 14



Absolutely regular sequences: a lower bound

• Let Xk = (Xj , j ≥ k) and

β(k) = ‖ sup
‖f‖∞≤1

|PXk|F0
(f)− PXk

(f)|‖1

• Theorem (Dedecker, M., Rio (12) : For any p > 2, there exists a stationary

Markov chain (Xi)i∈Z of random variables with uniform distribution over
[0, 1] and sequence of β-mixing coefficients (βn)n>0, such that:

• (i) 0 < lim infn→+∞ np−1βn ≤ lim supn→+∞ np−1βn < ∞.

• (ii) There exists a positive constant C such that, for any construction of a

sequence (Gn)n>0 of continuous Gaussian processes on [0, 1]

(a) lim inf
n→∞

n−1/p
E

(
sup

s∈(0,1]

|RX(s, n)−Gn(s)|
)
≥ C.
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A lower bound (to continue)

• Furthermore

(b) lim sup
n→∞

(n logn)−1/p
(

sup
s∈(0,1]

|RX(s, n)−Gn(s)|
)
> 0 a.s.
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A lower bound (to continue)

• Furthermore

(b) lim sup
n→∞

(n logn)−1/p
(

sup
s∈(0,1]

|RX(s, n)−Gn(s)|
)
> 0 a.s.

• Proof: The sequence (Xi)i∈Z is defined from a strictly stationary Markov

chain (ξi)i∈Z on [0, 1]. Let λ be the Lebesgue measure, a = p− 1 and
ν = (1 + a)xa

1[0,1]λ.
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(b) lim sup
n→∞

(n logn)−1/p
(
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|RX(s, n)−Gn(s)|
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> 0 a.s.

• Proof: The sequence (Xi)i∈Z is defined from a strictly stationary Markov

chain (ξi)i∈Z on [0, 1]. Let λ be the Lebesgue measure, a = p− 1 and
ν = (1 + a)xa

1[0,1]λ.

• The conditional distribution Π(x, .) of ξn+1, given (ξn = x), is defined by

Π(x, .) = Π(δx, .) = (1− x)δx + xν.
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A lower bound (to continue)

• Furthermore

(b) lim sup
n→∞

(n logn)−1/p
(

sup
s∈(0,1]

|RX(s, n)−Gn(s)|
)
> 0 a.s.

• Proof: The sequence (Xi)i∈Z is defined from a strictly stationary Markov

chain (ξi)i∈Z on [0, 1]. Let λ be the Lebesgue measure, a = p− 1 and
ν = (1 + a)xa

1[0,1]λ.

• The conditional distribution Π(x, .) of ξn+1, given (ξn = x), is defined by

Π(x, .) = Π(δx, .) = (1− x)δx + xν.

• Π has distribution function F (x) = xa. Setting Xi = ξai we obtain a
stationary Markov chain (Xi)i∈Z of random variables with uniform

distribution over [0, 1] and adequate rate of β-mixing.
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Upper bound: Dedecker, M., Rio (12)

• Let (Xi)i∈Z be a strictly stationary sequence of random variables in R
d.

Let Fj be the distribution function of the j-th marginal of X0. Assume that

βn = O(n1−p) for some p ∈]2, 3]. Then

Strong approximations in the dependent setting – p. 16



Upper bound: Dedecker, M., Rio (12)

• Let (Xi)i∈Z be a strictly stationary sequence of random variables in R
d.

Let Fj be the distribution function of the j-th marginal of X0. Assume that

βn = O(n1−p) for some p ∈]2, 3]. Then

• for all (s, s′) in R
2d, ΛX(s, s′) =

∑
k∈Z

Cov(1X0≤s,1Xk≤s′) converges
absolutely.
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Upper bound: Dedecker, M., Rio (12)

• Let (Xi)i∈Z be a strictly stationary sequence of random variables in R
d.

Let Fj be the distribution function of the j-th marginal of X0. Assume that

βn = O(n1−p) for some p ∈]2, 3]. Then

• for all (s, s′) in R
2d, ΛX(s, s′) =

∑
k∈Z

Cov(1X0≤s,1Xk≤s′) converges
absolutely.

• For any (s, s′) ∈ R
2d and (t, t′) in R

+ × R
+, let

ΓX(s, s′, t, t′) = min(t, t′)ΛX(s, s′)

Then enlarging Ω if necessary, there exists a centered Gaussian process
KX with covariance function ΓX , whose sample paths are almost surely

uniformly continuous with respect to the pseudo metric

d((s, t), (s′, t′)) = |t− t′|+
d∑

j=1

|Fj(sj)− Fj(s
′
j)| ,

and such that
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Upper bound (to continue)

• E
(
sup s∈Rd

k≤n

|RX(s, k)−KX(s, k)|
)
= O(n1/p(logn)λ(d)) ,
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Upper bound (to continue)

• E
(
sup s∈Rd

k≤n

|RX(s, k)−KX(s, k)|
)
= O(n1/p(logn)λ(d)) ,

• sup s∈Rd

k≤n

|RX(s, k)−KX(s, k)| = O(n1/p(logn)λ(d)+ε+1/p) almost surely,

for any ε > 0

Strong approximations in the dependent setting – p. 17



Upper bound (to continue)

• E
(
sup s∈Rd

k≤n

|RX(s, k)−KX(s, k)|
)
= O(n1/p(logn)λ(d)) ,

• sup s∈Rd

k≤n

|RX(s, k)−KX(s, k)| = O(n1/p(logn)λ(d)+ε+1/p) almost surely,

for any ε > 0

• where in both items λ(d) =
(
3d
2
+ 2− 2+d

2p

)
1p∈]2,3[ +

(
2 + 4d

3

)
1p=3.
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• E
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k≤n
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)
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• sup s∈Rd

k≤n

|RX(s, k)−KX(s, k)| = O(n1/p(logn)λ(d)+ε+1/p) almost surely,

for any ε > 0

• where in both items λ(d) =
(
3d
2
+ 2− 2+d

2p

)
1p∈]2,3[ +

(
2 + 4d

3

)
1p=3.

• In the independent case (p = 3), the power of logn can be improved as

follows
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• E
(
sup s∈Rd

k≤n

|RX(s, k)−KX(s, k)|
)
= O(n1/p(logn)λ(d)) ,

• sup s∈Rd

k≤n

|RX(s, k)−KX(s, k)| = O(n1/p(logn)λ(d)+ε+1/p) almost surely,

for any ε > 0

• where in both items λ(d) =
(
3d
2
+ 2− 2+d

2p

)
1p∈]2,3[ +

(
2 + 4d

3

)
1p=3.

• In the independent case (p = 3), the power of logn can be improved as

follows

• for the L
1-error : λ(d) = (2d+ 3)/3
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Upper bound (to continue)

• E
(
sup s∈Rd

k≤n

|RX(s, k)−KX(s, k)|
)
= O(n1/p(logn)λ(d)) ,

• sup s∈Rd

k≤n

|RX(s, k)−KX(s, k)| = O(n1/p(logn)λ(d)+ε+1/p) almost surely,

for any ε > 0

• where in both items λ(d) =
(
3d
2
+ 2− 2+d

2p

)
1p∈]2,3[ +

(
2 + 4d

3

)
1p=3.

• In the independent case (p = 3), the power of logn can be improved as

follows

• for the L
1-error : λ(d) = (2d+ 3)/3

• for the almost sure error : λ(d) = (2d+ 4)/3
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Hints for the proof (1)

• We transform the variables via another probability on Ω. We are lead to

random variables Yi with the same β-coefficients. These variables are on
[0, 1]d and each of its marginals has a density bounded by C(β)
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Hints for the proof (1)

• We transform the variables via another probability on Ω. We are lead to

random variables Yi with the same β-coefficients. These variables are on
[0, 1]d and each of its marginals has a density bounded by C(β)

• For any construction of a Kiefer process GY with covariance function ΓY

sup
1≤k≤2N+1

sup
s∈[0,1]d

∣∣RY (s, k)−GY (s, k)
∣∣

≤ sup
s∈[0,1]d

∣∣RY (s, 1)−GY (s, 1)
∣∣+

N∑

L=0

DL(GY ) .

where

DL(GY ) := sup
2L<ℓ≤2L+1

sup
s∈[0,1]d

∣∣(RY (s, ℓ)−RY (s, 2
L))−(GY (s, ℓ)−GY (s, 2

L))
∣∣ .
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Hints for the proof (2)

• Reduction to a grid. Let An denote the set of x in [0, 1]d such that nx is a
multivariate integer. Let

D′
L(GY ) = sup

2L<ℓ≤2L+1

sup
s∈A

2L

|RY (s, ℓ)−RY (s, 2L)−(GY (s, ℓ)−GY (s, 2L))|.
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Hints for the proof (2)

• Reduction to a grid. Let An denote the set of x in [0, 1]d such that nx is a
multivariate integer. Let

D′
L(GY ) = sup

2L<ℓ≤2L+1

sup
s∈A

2L

|RY (s, ℓ)−RY (s, 2L)−(GY (s, ℓ)−GY (s, 2L))|.

• DL(GY ) ≤ D′
L(GY ) + dC(β)

+ sup
2L<ℓ≤2L+1

‖s−s′‖∞≤2−L

|(GY (s, ℓ)−GY (s, 2L))− (GY (s′, ℓ)−GY (s′, 2L))|

Strong approximations in the dependent setting – p. 19



Hints for the proof (2)

• Reduction to a grid. Let An denote the set of x in [0, 1]d such that nx is a
multivariate integer. Let

D′
L(GY ) = sup

2L<ℓ≤2L+1

sup
s∈A

2L

|RY (s, ℓ)−RY (s, 2L)−(GY (s, ℓ)−GY (s, 2L))|.

• DL(GY ) ≤ D′
L(GY ) + dC(β)

+ sup
2L<ℓ≤2L+1

‖s−s′‖∞≤2−L

|(GY (s, ℓ)−GY (s, 2L))− (GY (s′, ℓ)−GY (s′, 2L))|

• Using concentration inequality for Gaussian process,

E
(
DL(GY )

)
≤ E

(
D′

L(GY )
)
+ c(d)

√
L
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Hints for the proof (2)

• Reduction to a grid. Let An denote the set of x in [0, 1]d such that nx is a
multivariate integer. Let

D′
L(GY ) = sup

2L<ℓ≤2L+1

sup
s∈A

2L

|RY (s, ℓ)−RY (s, 2L)−(GY (s, ℓ)−GY (s, 2L))|.

• DL(GY ) ≤ D′
L(GY ) + dC(β)

+ sup
2L<ℓ≤2L+1

‖s−s′‖∞≤2−L

|(GY (s, ℓ)−GY (s, 2L))− (GY (s′, ℓ)−GY (s′, 2L))|

• Using concentration inequality for Gaussian process,

E
(
DL(GY )

)
≤ E

(
D′

L(GY )
)
+ c(d)

√
L

• We consider d = 1. Let ~U (0)
k,L = ~Uk,L − E(~Uk,L) where

~Uk,L =
((

1Y
k+2L

∈[0,j2−L]

)
j=1,...,2L

)t
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Hint for the proof (3)

• Let ~ek,L =
((

1k≤m

)
m=1,...,2L

)t

and

~SL =

2L∑

k=1

~ek,L ⊗ ~U
(0)
k,L :=

2L∑

k=1

~Vk,L and CL = E
(
~SL

~St
L

)
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Hint for the proof (3)

• Let ~ek,L =
((

1k≤m

)
m=1,...,2L

)t

and

~SL =

2L∑

k=1

~ek,L ⊗ ~U
(0)
k,L :=

2L∑

k=1

~Vk,L and CL = E
(
~SL

~St
L

)

• On R
2m , we define the following distance

cm(x, y) = sup
j∈{1,··· ,2m}

|x(j) − y(j)| .

Strong approximations in the dependent setting – p. 20



Hint for the proof (3)

• Let ~ek,L =
((

1k≤m

)
m=1,...,2L

)t

and

~SL =

2L∑

k=1

~ek,L ⊗ ~U
(0)
k,L :=

2L∑

k=1

~Vk,L and CL = E
(
~SL

~St
L

)

• On R
2m , we define the following distance

cm(x, y) = sup
j∈{1,··· ,2m}

|x(j) − y(j)| .

• According to Rüschendorf (85), there exists ~TL =
(
T

(1)
L , · · · , T (2L(d+1))

L

)t

with law NCL
, measurable with respect to σ(δL) ∨ σ(~SL,d) ∨ F2L ,

independent of F2L and such that

E
(
c(d+1)L(~SL, ~TL)

)
= E

(
Wc(d+1)L

(P~SL|F
2L

,NCL
)
)

= E sup
f∈Lip(c(d+1)L)

(
E
(
f(~SL)|F2L

)
− E(f(~TL))

)
.
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(
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(P~SL|F
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)
)
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(
E
(
f(~SL)|F2L

)
− E(f(~TL))

)
.
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Hints for the proof (4)

• Hence we have constructed a sequence of centered Gaussian random

variables (~TL)L∈N in R
2(d+1)L

such that E
(
~TL

~T t
L

)
= CL, and that are

mutually independent.
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Hints for the proof (4)

• Hence we have constructed a sequence of centered Gaussian random

variables (~TL)L∈N in R
2(d+1)L

such that E
(
~TL

~T t
L

)
= CL, and that are

mutually independent.

• In the independent case, they satisfy for ℓ,m ∈ {1, . . . , 2L} and

sL,j = (j12
−L, . . . , jd2

−L) and sL,k = (k12
−L, . . . , kd2

−L)

Cov
(
(~TL)(ℓ−1)2dL+

∑
d
i=1(ji−1)2(d−i)L+1, (

~TL)(m−1)2dL+
∑

d
i=1(ki−1)2(d−i)L+1

)

= inf(ℓ,m)Cov(1Y0≤sL,j
,1Y0≤sL,k

) := ΓY (sL,j , sL,k, ℓ,m) .
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Hints for the proof (4)

• Hence we have constructed a sequence of centered Gaussian random

variables (~TL)L∈N in R
2(d+1)L

such that E
(
~TL

~T t
L

)
= CL, and that are

mutually independent.

• In the independent case, they satisfy for ℓ,m ∈ {1, . . . , 2L} and

sL,j = (j12
−L, . . . , jd2

−L) and sL,k = (k12
−L, . . . , kd2

−L)

Cov
(
(~TL)(ℓ−1)2dL+

∑
d
i=1(ji−1)2(d−i)L+1, (

~TL)(m−1)2dL+
∑

d
i=1(ki−1)2(d−i)L+1

)

= inf(ℓ,m)Cov(1Y0≤sL,j
,1Y0≤sL,k

) := ΓY (sL,j , sL,k, ℓ,m) .

• Hence, in the independent case, there exists a Kiefer process KY with

covariance ΓY such that for sL,j = (j12
−L, . . . , jd2

−L)

KY (sL,j , ℓ+ 2L)−KY (sL,j , 2
L) =

(
~TL

)
(ℓ−1)2dL+

∑
d
i=1(ji−1)2(d−i)L+1

.

(Dudley and Philipp (1983))
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Hints for the proof (4)

• In the independent case, the construction is complete and

E
(
D′

L(KY )
)
= E

(
c(d+1)L(~SL, ~TL)

)

Strong approximations in the dependent setting – p. 22



Hints for the proof (4)

• In the independent case, the construction is complete and

E
(
D′

L(KY )
)
= E

(
c(d+1)L(~SL, ~TL)

)

• In the independent case, it remains to show that

E
(
c(d+1)L(~SL, ~TL)

)
= sup

f∈Lip(c(d+1)L)

(
E
(
f(~SL)

)
− E(f(~TL))

)
≪ 2L/3Lλ(d)
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Hints for the proof (4)

• In the independent case, the construction is complete and

E
(
D′

L(KY )
)
= E

(
c(d+1)L(~SL, ~TL)

)

• In the independent case, it remains to show that

E
(
c(d+1)L(~SL, ~TL)

)
= sup

f∈Lip(c(d+1)L)

(
E
(
f(~SL)

)
− E(f(~TL))

)
≪ 2L/3Lλ(d)

• In the dependent case, much work is needed.
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Hints for the proof (4)

• In the independent case, the construction is complete and

E
(
D′

L(KY )
)
= E

(
c(d+1)L(~SL, ~TL)

)

• In the independent case, it remains to show that

E
(
c(d+1)L(~SL, ~TL)

)
= sup

f∈Lip(c(d+1)L)

(
E
(
f(~SL)

)
− E(f(~TL))

)
≪ 2L/3Lλ(d)

• In the dependent case, much work is needed.

• To bound suitably:

E sup
f∈Lip(c(d+1)L)

(
E
(
f(~SL)|F2L

)
− E(f(~TL))

)

we use the Lindeberg method for the "conditional Wasserstein distance"

and we introduce sparse vectors (whose "real" dimension is Ld+1 and not
2L(d+1)!).
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Upper bounds with weaker dependence coefficients.

• We consider the case d = 1
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Upper bounds with weaker dependence coefficients.

• We consider the case d = 1

• We define (here F0 = σ(Xi, i ≤ 0))

b(F0, i, j) = sup
(s,t)∈R2

|P(Xi ≤ t,Xj ≤ s|F0)− P(Xi ≤ t,Xj ≤ s)|

and

β2,Y (k) = sup
i≥j≥k

E(b(F0, i, j)) .
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Upper bounds with weaker dependence coefficients.

• We consider the case d = 1

• We define (here F0 = σ(Xi, i ≤ 0))

b(F0, i, j) = sup
(s,t)∈R2

|P(Xi ≤ t,Xj ≤ s|F0)− P(Xi ≤ t,Xj ≤ s)|

and

β2,Y (k) = sup
i≥j≥k

E(b(F0, i, j)) .

• For the stationary Markov chain associated to the intermittent map
considered before,

β2,Y (k) = O(n1−p) for any p < 1/γ

(see Dedecker and Prieur (2009)).
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Theorem : Dedecker, M., Rio (2012)

• If β2,X(n) = O(n1−p) for some p > 2. Then
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Theorem : Dedecker, M., Rio (2012)

• If β2,X(n) = O(n1−p) for some p > 2. Then

• For all (s, s′) ∈ R
2, the following series converges absolutely

ΛX(s, s′) =
∑

k≥0

Cov(1X0≤s,1Xk≤s′) +
∑

k>0

Cov(1X0≤s′ ,1Xk≤s)
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Theorem : Dedecker, M., Rio (2012)

• If β2,X(n) = O(n1−p) for some p > 2. Then

• For all (s, s′) ∈ R
2, the following series converges absolutely

ΛX(s, s′) =
∑

k≥0

Cov(1X0≤s,1Xk≤s′) +
∑

k>0

Cov(1X0≤s′ ,1Xk≤s)

• Let ΓX(s, s′, t, t′) = min(t, t′)ΛX(s, s′). There exists a centered Gaussian

process KX with covariance function ΓX , whose sample paths are almost
surely uniformly continuous with respect to the pseudo metric

d((s, t), (s′, t′)) = |F (s)− F (s′)|+ |t− t′| ,

and such that for ε = (p− 2)2/(22p2),

sup
s∈R,t∈[0,1]

|RX(s, [nt])−KX(s, [nt])| = O(n1/2−ε) almost surely,
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On the optimality of the result

• There exists a Markov chain such that β2,X(k) > ck−1 for some positive

constant c such that the finite dimensional marginals of the process
{(n lnn)−1/2RT (·, n)} converge in distribution to those of the degenerated

Gaussian process G defined by

for any t ∈ [0, 1], G(t) = f(t)1t6=0Z ,

where Z is a standard normal.
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On the optimality of the result

• There exists a Markov chain such that β2,X(k) > ck−1 for some positive

constant c such that the finite dimensional marginals of the process
{(n lnn)−1/2RT (·, n)} converge in distribution to those of the degenerated

Gaussian process G defined by

for any t ∈ [0, 1], G(t) = f(t)1t6=0Z ,

where Z is a standard normal.

• This shows that an approximation by a Kiefer process as in our main result
cannot hold for this chain.
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Thank you for your attention!
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Thank you for your attention!
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